[1] 蔡立群,齐鹏,张仁陟.保护性耕作对麦-豆轮作条件下土壤团聚体组成及有机碳含量的影响[J].水土保持学报,2008(2):141-145 [2] 李映雪,臧真凤,张瑜,等.退耕还草对土壤碳库活度及团聚体活性有机碳组分分布的影响[J].水土保持研究,2023,30(5):241-249 [3] 王长庭,龙瑞军,王启基,等.高寒草甸不同海拔梯度土壤有机质氮磷的分布和生产力变化及其与环境因子的关系[J].草业学报,2005(4):15-20 [4] 路茜.气候变化对青藏高原表层土壤水分时空格局的影响研究[D].兰州:甘肃农业大学,2017:15-20 [5] BONDER G,LEITNER D,KAUL H P. Coarse and fine root plants affect pore size distributions differently[J]. Plan Soil,2014,380(1):133-151 [6] 万欣,张帅文,张润琴,等.青藏高原不同土地利用方式土壤团聚体组成及稳定性特征[J].水土保持研究,2024,31(1):53-60 [7] 李景,吴会军,武雪萍,等. 15年保护性耕作对黄土坡耕地区土壤及团聚体固碳效应的影响[J].中国农业科学,2015,48(23):4690-4697 [8] LIANG A Z,ZHANG Y,ZHANG X P,et al. Investigations of relationships among aggregate pore structure,microbial biomass,and soil organic carbon in a Mollisol using combined non-destructive measurements and phospholipid fatty acid analysis[J]. Soil and Tillage Research,2019(185):94-101 [9] YAO Y,GE N N,WEI X R,et al. Responses of soil organic carbon mineralization and its temperature sensitivity to re-vegetation in the agro-pastoral ecotone of northern China[J]. European Journal of Soil Biology,2021(2)103:103278 [10] DILLON M E,WANG G,HUEY R B. Global metabolic impacts of recent climate warming[J]. Nature,2010,467(7316):704-706 [11] 吴国雄,段安民,张雪芹,等.青藏高原极端天气气候变化及其环境效应[J].自然杂志,2013,35(3):167-171 [12] 陈晓鹏,王根绪,孙菊英,等.增温和氮添加对长江源区高寒沼泽草甸生态系统呼吸的影响[J].草地学报,2020,28(1):193-199 [13] 宗宁,柴曦,石培礼,等.藏北高寒草甸群落结构与物种组成对增温与施氮的响应[J].应用生态学报,2016,27(12):3739-3748 [14] 秦瑞敏,温静,张世雄,等.模拟增温对青藏高原高寒草甸土壤C、N、P化学计量特征的影响[J].干旱区研究,2020,37(4):908-916 [15] 武倩,鞠馨,任海燕,等.降水调节荒漠草原生态系统碳交换对增温和氮添加的响应[J].草地学报,2024,32(4):1224-1233 [16] 张云云.模拟气候变暖对高寒泥炭湿地碳稳定性的影响及机制研究[D].北京:北京林业大学,2019:15-23 [17] XU H W,WANG M G,YOU C M,et al. Warming effects on C:N:P stoichiometry and nutrient limitation in terrestrial ecosystems[J]. Soil and Tillage Research,2024,235(1):105896 [18] 安娜.增温对青藏高原高寒草甸土壤团聚体碳氮磷的影响[D].长春:吉林农业大学,2018:38-41 [19] LIANG C,BALSER T C. Warming and nitrogen deposition lessen microbial residue contribution to soil carbon pool[J]. Nature Communications,2012,3:1222 [20] POLD G,GRANDY A S,MELILLO J M,et al. Changes in substrate availability drive carbon cycle response to chronic warming[J]. Soil Biology and Biochemistry,2017,110:68-78 [21] 王清奎,汪思龙.土壤团聚体形成与稳定机制及影响因素[J].土壤通报,2005,36(3):415-421 [22] WANG J F,WU Q B. Impact of experimental warming on soil temperature and moisture of the shallow active layer of wet meadows on the Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology,2013,90:1-8 [23] ALATALO J M,JÄGERBRAND A K,JUHANSON J,et al. Impacts of twenty years of experimental warming on soil carbon,nitrogen,moisture and soil mites across alpine/subarctic tundra communities[J]. Scientific Reports,2017,7:44489 [24] 赵双,张涛,石连旋,等.模拟增温和施氮条件下丛枝菌根真菌对草甸草原土壤团聚体稳定性和土壤碳储量的影响[J].中国草地学报,2021,43(9):97-106 [25] 曾红丽,白炜,房佳辰,等.模拟增温对高寒沼泽草甸土壤细菌群落的影响[J].环境科学与技术,2022,45(4):164-172 [26] 张欣,任海燕,韩国栋.增温和施氮对内蒙古荒漠草原土壤团聚体稳定性及碳含量的影响[J].草原与草业,2020,32(2):22-26 [27] 王茹,张永清,宗宁,等.长期增温对西藏高寒草甸土壤团聚体周转和稳定性影响[J].土壤通报,2023,54(3):596-605 [28] GUAN S,AN N,ZONG N,et al. Climate warming impacts on soil organic carbon fractions and aggregate stability in a Tibetan alpine meadow[J]. Soil Biology and Biochemistry,2018,116:224-236 [29] 王建林,钟志明,王忠红,等.青藏高原高寒草原生态系统土壤碳氮比的分布特征[J].生态学报,2014,34(22):6678-6691 [30] 甘安琪,姜佳昌,李霞,等.放牧强度对高寒草地土壤团聚体稳定性及有机碳含量影响[J].草地学报,2024,32(6):1832-1842 [31] 李林芝,马源,张小燕,等.不同退化程度高寒草甸土壤团聚体及其有机碳分布特征[J].草地学报,2023,31(1):210-219 [32] 肖锦旺,王根绪,胡兆永,等.多年冻土区高寒草甸蒸散发模型适用性评价--以青藏高原风火山地区为例[J].冰川冻土,2023,45(5):1629-1639 [33] 韩贞贵,毛天旭,屠丹,等.长江源区草地覆盖变化对土壤团聚体分布及稳定性的影响[J].草地学报,2020,28(3):801-807 [34] 习丹,旷远文.广州城郊森林公园常绿阔叶林土壤有机碳及组分特征[J].生态科学,2019,38(1):226-232 [35] 谢小玲,李海锋,李雪莹,等.土壤全氮半微量定氮法与自动定氮仪定氮法的比较分析[J].生态环境学报,2012,21(6):1071-1074 [36] 颜雄.长期施肥对水稻土和旱地红壤的肥力质量、有机碳库与团聚体形成机制的影响[D].长沙:湖南农业大学,2013:21-28 [37] CHENG X,LUO Y,XU X,et al. Soil organic matter dynamics in a North America tallgrass prairie after 9 years of experimental warming[J]. Biogeosciences,2011,8(6):1487-1498 [38] WANG Y,GAO S Q,LI C L,et al. Effects of temperature on soil organic carbon fractions contents,aggregate stability and structural characteristics of humic substances in a Mollisol[J]. Journal of Soils and Sediments,2016,16(7):1849-1857 [39] 唐晓红,邵景安,高明,等.保护性耕作对紫色水稻土团聚体组成和有机碳储量的影响[J].应用生态学报,2007,18(5):1029-1034 [40] 董天富,邓志豪,杨静,等.喀斯特退耕地不同植被恢复阶段土壤团聚体稳定性特征[J].水土保持研究,2024,31(2):33-42 [41] BRONICK C J,LAL R. Soil structure and management:a review[J]. Geoderma,2005,124(1/2):3-22 [42] 吕思扬,宋思意,黎蕴洁,等.氮添加和凋落物增减对华西雨屏区常绿阔叶林土壤团聚体及其碳氮的影响[J].水土保持学报,2022,36(1):277-287 [43] 黄圣杰,陈俊朴,陈涛,等.不同覆盖模式对樱桃园土壤团聚体及碳氮的影响[J].水土保持研究,2022,29(1):44-50 [44] O'BRIEN S L,JASTROW J D. Physical and chemical protection in hierarchical soil aggregates regulates soil carbon and nitrogen recovery in restored perennial grasslands[J]. Soil Biology and Biochemistry,2013,61:1-13 [45] 周学雅,陈志杰,耿世聪,等.氮沉降对长白山森林土壤团聚体内碳、氮含量的影响[J].应用生态学报,2019,30(5):1543-1552 [46] WANG W,CHEN W C,WANG K R,et al. Effects of long-term fertilization on the distribution of carbon,nitrogen and phosphorus in water-stable aggregates in paddy soil[J]. Agricultural Sciences in China,2011,10(12):1932-1940 [47] GELAW A M,SINGH B R,LAL R. Organic carbon and nitrogen associated with soil aggregates and particle sizes under different land uses in Tigray,northern Ethiopia[J]. Land Degradation& Development,2015,26(7):690-700 [48] SEO J,JANG I,JUNG J Y,et al. Warming and increased precipitation enhance phenol oxidase activity in soil while warming induces drought stress in vegetation of an Arctic ecosystem[J]. Geoderma,2015,259:347-353 [49] BIMÜLLER C,KREYLING O,KÖLBL A,et al. Carbon and nitrogen mineralization in hierarchically structured aggregates of different size[J]. Soil and Tillage Research,2016,160:23-33 [50] 杨静,张耀艺,谭思懿,等.中亚热带不同树种对土壤团聚体组成及其碳、氮含量的影响[J].林业科学,2022,58(4):51-61 [51] 衡涛,吴建国,谢世友,等.高寒草甸土壤碳和氮及微生物生物量碳和氮对温度与降水量变化的响应[J].中国农学通报,2011,27(3):425-430 [52] BAI J S,ZHANG S Q,HUANG S M,et al.Effects of the combined application of organic and chemical nitrogen fertilizer on soil aggregate carbon and nitrogen:A 30-year study[J]. Journal of Integrative Agriculture,2023,22(11):3517-3534 |