[1] Anthonym S, Alank K, Henniea S. Intra-seasonal precipitation patterns and above-ground productivity in three perennial grasslands[J]. Journal of Ecology,2007,95(4):780-788
[2] Ma W H, Yang Y H, He J S, et al. Above-and belowground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia[J]. 中国科学:生命科学,2008,51(3):263-270
[3] Yahdjian L, Sala O E, Austin A T. Differential Controls of Water Input on Litter Decomposition and Nitrogen Dynamics in the Patagonian Steppe[J]. Ecosystems,2006,9(1):128-141
[4] 王常顺,孟凡栋,李新娥,等. 草地植物生产力主要影响因素研究综述[J]. 生态学报,2014,34(15):4125-4132
[5] 任正炜. 资源添加对青藏高原高寒草甸物种多样性的影响[D]. 兰州:兰州大学,2010
[6] 师瑞玲. 氮磷添加引起青藏高原亚高寒草甸物种多样性丧失的机理研究[D]. 兰州:兰州大学,2014
[7] Li J H, Yang Y J, Li B W, et al. Effects of nitrogen and phosphorus fertilization on soil carbon fractions in alpine meadows on the Qinghai-Tibetan Plateau[J]. Plos One,2014,9(7):e103266
[8] Lebauer, David S, et al, Kathleen K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed[J]. Ecology,2008,89(2):371-379
[9] 纪亚君. 青海高寒草甸施氮肥增产效应浅析[J]. 草业科学,2006,23(3):26-29
[10] Jiang C, Yu G, Li Y, et al. Nutrient resorption of coexistence species in alpine meadow of the Qinghai-Tibetan Plateau explains plant adaptation to nutrient-poor environment[J]. Ecological Engineering,2012,44:1-9
[11] 郭红玉,德科加,芦光新,等. 模拟增温和添加氮素对高寒草甸草地生产力影响的初步研究[J]. 草地学报,2015,23(02):322-327
[12] Wang S, Duan J, Xu G, et al. Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow[J]. Ecology,2012,93(11):2365-2376
[13] Li X, Zhang X, Wu J, et al. Root biomass distribution in alpine ecosystems of the northern Tibetan Plateau[J]. Environmental Earth Sciences,2011,64(7):1911-1919
[14] 杨晓霞,任飞,周华坤,等. 青藏高原高寒草甸植物群落生物量对氮,磷添加的响应[J]. 植物生态学报,2014,38(2):159-166
[15] Tilman D. Secondary succession and the pattern of plant dominance along experimental nitrogen gradients[J]. Ecological Monographs,1987,57(3):189-214
[16] 沈振西,周兴民,陈佐忠,等. 高寒矮嵩草草甸植物类群对模拟降水和施氮的响应[J]. 植物生态学报,2002,26(3):288-294
[17] Song M H, Yu F H, Ouyang H, et al. Different inter-annual responses to availability and form of nitrogen explain species coexistence in an alpine meadow community after release from grazing[J]. Global Change Biology,2012,18(10):3100-3111
[18] Bai Y, Wu J, Clark C M, et al. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning:evidence from inner Mongolia Grasslands[J]. Global Change Biology,2010,16(1):358-372
[19] Bai W, Guo D, Tian Q, et al. Differential responses of grasses and forbs led to marked reduction in below-ground productivity in temperate steppe following chronic N deposition[J]. Journal of Ecology,2015,103(6):1570-1579
[20] Tian Q, Liu N, Bai W, et al. A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe[J]. Ecology,2016,97(1):65-74
[21] 何利元,胡中民,郭群,等. 氮磷添加对内蒙古温带草地地上生物量的影响[J]. 应用生态学报,2015,26(8):2291-2297
[22] Xu X, Ouyang H, Cao G, et al. Dominant plant species shift their nitrogen uptake patterns in response to nutrient enrichment caused by a fungal fairy in an alpine meadow[J]. Plant and Soil,2011,341(1-2):495-504
[23] Peng Y, Yu P, Zhang Y, et al. Temporal and spatial dynamics in root length density of field-grown maize and NPK in the soil profile[J]. Field Crops Research,2012,131:9-16
[24] Jones D L, Shannon D, Murphy D V, et al. Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils[J]. Soil Biology and Biochemistry,2004,36(5):749-756
[25] Averill C, Finzi A. Increasing plant use of organic nitrogen with elevation is reflected in nitrogen uptake rates and ecosystem δ15N[J]. Ecology,2011,92(4):883-891
[26] 王文颖,刘俊英. 植物吸收利用有机氮营养研究进展[J]. 应用生态学报,2009,20(5):1223-1228
[27] 王文颖,马永贵,徐进,等. 高寒矮嵩草(Kobresia humilis)草甸植物吸收土壤氮素的多元化途径研究[J]. 中国科学:地球科学(中文版),2012,42(8):1264-1272
[28] McKane R B, Johnson L C, Shaver G R, et al. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra[J]. Nature,2002,415(6867):68-71
[29] Xu X, Ouyang H, Richter A, et al. Spatio-temporal variations determine plant-microbe competition for inorganic nitrogen in an alpine meadow[J]. Journal of Ecology,2011,99(2):563-571
[30] Jiang L, Wang S, Pang Z, et al. Grazing modifies inorganic and organic nitrogen uptake by coexisting plant species in alpine grassland[J]. Biology and Fertility of Soils,2016,52(2):211-221
[31] Gao J Q, Mo Y, Xu X L, et al. Spatiotemporal variations affect uptake of inorganic and organic nitrogen by dominant plant species in an alpine wetland[J]. Plant and soil,2014,381(1-2):271-278
[32] Schleuss P M, Heitkamp F, Sun Y, et al. Nitrogen uptake in an alpine Kobresia pasture on the Tibetan Plateau:localization by 15N labeling and implications for a vulnerable ecosystem[J]. Ecosystems,2015,18(6):946-957
[33] Ashton I W, Miller A E, Bowman W D, et al. Niche complementarity due to plasticity in resource use:plant partitioning of chemical N forms[J]. Ecology,2010,91(11):3252-3260
[34] Nordin A, Schmidt I K, Shaver G R. Nitrogen uptake by arctic soil microbes and plants in relation to soil nitrogen supply[J]. Ecology,2004,85(4):955-962
[35] Jaeger C H, Monson R K, Fisk M C, et al. Seasonal partitioning of nitrogen by plants and soil microorganisms in an alpine ecosystem[J]. Ecology,1999,80(6):1883-1891
[36] Song M H, Zheng L L, Suding K N, et al. Plasticity in nitrogen form uptake and preference in response to long-term nitrogen fertilization[J]. Plant and Soil,2015,394(1-2):215-224
[37] Wang C, Feng Z, Xiang Z, et al. The effects of N and P additions on microbial N transformations and biomass on saline-alkaline grassland of Loess Plateau of Northern China[J]. Geoderma,2014,213(1):419-425
[38] Blanes M C, Emmett B A, Viñegla B, et al. Alleviation of P limitation makes tree roots competitive for N against microbes in a N-saturated conifer forest:A test through P fertilization and 15N labelling[J]. Soil Biology & Biochemistry,2012,48(48):51-59
[39] 苏渝钦,刘何铭,郑泽梅,等. 氮磷添加对中亚热带常绿阔叶林土壤有效氮和pH值的影响[J]. 生态学杂志,2016,35(9):2279-2285
[40] 罗亲普,龚吉蕊,徐沙,等. 氮磷添加对内蒙古温带典型草原净氮矿化的影响[J]. 植物生态学报,2016,40(5):480-492
[41] Vitousek P M, Howarth R W. Nitrogen limitation on land and in the sea:how can it occur?[J]. Biogeochemistry,1991,13(2):87-115
[42] Peñuelas J, Poulter B, Sardans J, et al. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe[J]. Nature Communications,2013,4(1):2934
[43] Manzoni S, Trofymow J A, Jackson R B, et al. Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter[J]. Ecological Monographs,2010,80(1):89-106
[44] Koerselman W. The Vegetation N:P Ratio:a New Tool to Detect the Nature of Nutrient Limitation[J]. Journal of Applied Ecology,1996,33(6):1441-1450
[45] Soudzilovskaia N A, Onipchenko V G, Cornelissen J H C, et al. Biomass production, N:P ratio and nutrient limitation in a Caucasian alpine tundra plant community[J]. Journal of Vegetation Science,2005,16(4):399-406
[46] Reich P B, Oleksyn J, Wright I J. Leaf phosphorus influences the photosynthesis-nitrogen relation:a cross-biome analysis of 314 species[J]. Oecologia,2009,160(2):207-212
[47] Berendse F, Aerts R. Nitrogen-Use-Efficiency:A Biologically Meaningful Definition?[J]. Functional Ecology,1987,1(3):293-296
[48] He J S, Wang Z, Wang X, et al. A test of the generality of leaf trait relationships on the Tibetan Plateau[J]. New Phytologist,2006,170(4):835-848
[49] He J S, Wang L, Flynn D F B, et al. Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes[J]. Oecologia,2008,155(2):301-310
[50] Lü X T, Reed S, Yu Q, et al. Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland[J]. Global Change Biology,2013,19(9):2775-2784
[51] Lü X T, Freschet G T, Kazakou E, et al. Contrasting responses in leaf nutrient-use strategies of two dominant grass species along a 30-yr temperate steppe grazing exclusion chronosequence[J]. Plant and Soil,2015,387(1-2):69-79
[52] Lü X T, Reed S C, Yu Q, et al. Nutrient resorption helps drive intra-specific coupling of foliar nitrogen and phosphorus under nutrient-enriched conditions[J]. Plant and Soil,2016,398(1):1-10
[53] Lü X T, Wei C Z, Cui Q, et al. Interactive effects of soil nitrogen and water availability on leaf mass loss in a temperate steppe[J]. Plant and Soil,2010,331(1-2):497-504
[54] Milla R, Palacio-Blasco S, Maestro-Martínez M, et al. Phosphorus Accretion in Old Leaves of a Mediterranean Shrub Growing at a Phosphorus-Rich Site[J]. Plant & Soil,2006,280(1-2):369-372
[55] Kozovits A R, Mmc B, Garofalo C R, et al. Nutrient resorption and patterns of litter production and decomposition in a Neotropical Savanna[J]. Functional Ecology,2007,21(6):1034-1043
[56] 黄菊莹,袁志友,李凌浩. 羊草绿叶氮、磷浓度和比叶面积沿氮、磷和水分梯度的变化[J]. 植物生态学报,2009,33(3):442-448
[57] 邓建明,姚步青,周华坤,等. 水氮添加条件下高寒草甸主要植物种氮素吸收分配的同位素示踪研究[J]. 植物生态学报,2014,38(2):116-124
[58] 宾振钧,王静静,张文鹏,等. 氮肥添加对青藏高原高寒草甸6个群落优势种生态化学计量学特征的影响[J]. 植物生态学报,2014,38(3):231-237
[59] Wu Y, Wu J, Deng Y, et al. Comprehensive assessments of root biomass and production in a Kobresia humilis meadow on the Qinghai-Tibetan Plateau[J]. Plant and Soil,2011,338(1-2):497-510
[60] Peng Y, Li X, Li C. Temporal and spatial profiling of root growth revealed novel response of maize roots under various nitrogen supplies in the field[J]. Plos One,2012,7(5):e37726
[61] Holmes B M. Novel temporal, fine-scale and growth variation phenotypes in roots of adult-stage maize (Zea mays L.) in response to low nitrogen stress[J]. Plant, cell & environment,2011,34(12):2122
[62] 郭大力,范萍萍. 关于氮有效性影响细根生产量和周转率的四个假说[J]. 应用生态学报,2007,18(10):2354-2360
[63] 史建伟,于水强,于立忠,等. 微根管在细根研究中的应用[J]. 应用生态报,2006,17(4):715-719
[64] Jin J, Liu X, Wang G, et al. Effect of phosphorus application on hierarchical lateral root morphology and phosphorus acquisition in soybean[J]. Journal of plant nutrition,2013,36(10):1578-1589
[65] Burton A J, Pregitzer K S, Hendrick R L. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests[J]. Oecologia,2000,125(3):389-399
[66] 祁瑜,黄永梅,王艳,等. 施氮对几种草地植物生物量及其分配的影响[J]. 生态学报,2011,31(18):5121-5129
[67] 沈振西,陈佐忠,周兴民,等. 高施氮量对高寒矮嵩草甸主要类群和多样性及质量的影响[J]. 草地学报,2002,10(01):7-17
[68] 周兴民,王启基,师生波. 中国嵩草草甸[J]. 北京:科学出版社,2001,131
[69] Lü C, Tian H. Spatial and temporal patterns of nitrogen deposition in China:synthesis of observational data[J]. Journal of Geophysical Research:Atmospheres,2007,112(D22):229-238
[70] Zhang X Z, Shen Z X, Fu G. A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau[J]. Applied Soil Ecology,2015,87:32-38
[71] 仁青吉,罗燕江,王海洋,等. 青藏高原典型高寒草甸退化草地的恢复——施肥刈割对草地质量的影响[J]. 草业学报,2004,13(2):43-49
[72] 卡着才让,德科加,徐成体. 不同施肥时间及施氮水平对高寒草甸生物量和土壤养分的影响[J]. 草地学报,2015,23(4):726-732 |