[1] 龙瑞军. 青藏高原草地生态系统之服务功能[J]. 科技导报,2007,25(9):26-28 [2] 姚檀栋,朱立平. 青藏高原环境变化对全球变化的响应及其适应对策[J]. 地球科学进展,2006,21(5):459-464 [3] 吴建国,吕佳佳. 气候变化对青藏高原高寒草甸适宜气候分布范围的潜在影响[J]. 草地学报,2009,17(06):699-705 [4] 董玉祥. 青藏高原沙漠化研究的进展与问题[J]. 中国沙漠,1999,19(3):251-255 [5] Miehe G,Miehe S,Böhner J,et al. How old is the human footprint in the world's largest alpine ecosystem? A review of multiproxy records from the Tibetan plateau from the ecologists' viewpoint. Quat[J]. Scientific Revolution,2014(86):190-209 [6] Wang Y,Wesche K. Vegetation and soil responses to livestock grazing in Central Asian grasslands:a review of Chinese literature[J]. Biodiversity and Conservation,2016,25(12):2401-2420 [7] Abdalla M,Hastings A,Chadwick D R. Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed Grasslands[J]. Agriculture,Ecosystems & Environment,2018(253):62-81 [8] 张蒙,李晓兵. 放牧对土壤有机碳的影响及相关过程研究进展[J]. 草地学报,2018,26(02):267-276 [9] Herrero-Jáuregui C,Oesterheld M. Effects of grazing intensity on plant richness and diversity:a meta-analysis[J]. Oikos,2018,127(6):757-766 [10] 马源,李林芝,张德罡,等. 退化高寒草甸优势植物根际与非根际土壤养分及微生物量的分布特征[J]. 草地学报,2019,27(04):797-804 [11] Bardgett R D,van W H. Belowground biodiversity and ecosystem functioning[J]. Nature,2014,515(7528):505-511 [12] Delgado-Baquerizo M,Maestre F T,Gallardo A,et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands[J]. Nature,2013,502(7473):672-676 [13] Rineau F,Shah F,Smits M M,et al. Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus[J]. International Society for Microbial Ecology,2013,7(10):2010-2022 [14] 韩冬雪,王宁,王楠楠,等. 不同海拔红松林土壤微生物功能多样性[J]. 应用生态学报,2015,26(12):3649-3656 [15] Cruz-Martínez K,Suttle KB,Brodie EL,et al. Despite strong seasonal responses,soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland[J]. International Society for Microbial Ecology,2009,3(6):738-744 [16] Yang Y,Gao Y,Wang S,et al. The microbial gene diversity along an elevation gradient of the Tibetan grassland[J]. International Society for Microbial Ecology,2014,8(2):430-440 [17] Rousk J,Bååth E,Brookes P C,et al. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. International Society for Microbial Ecology,2010,4(10):1340-1351 [18] Andrés P,Moore J C,Cotrufo F,et al. Grazing and edaphic properties mediate soil biotic response to altered precipitation patterns in a semiarid prairie[J]. Soil Biology and Biochemistry,2017(113):263-274 [19] Schwabedissen S G,Lohse K A,Reed S C,et al. Nitrogenase activity by biological soil crusts in cold sagebrush steppe ecosystems[J]. Biogeochemistry,2017(134):57-76 [20] Yang Y,Wu L,Lin Q,et al. Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland[J]. Global Change Biology,2013,19(2):637-648 [21] Wolf B,Zheng X,Brüggemann N,et al. Grazing-induced reduction of natural nitrous oxide release from continental steppe[J]. Nature,2010,464(7290):881-884 [22] Maharning A R,Mills A S,Adl S M. Soil community changes during secondary succession to naturalized grasslands[J]. Applied Soil Ecology,2009,41(2):137-147 [23] Northup B K,Brown J R,Holt J A. Grazing impacts on the spatial distribution of soil microbial biomass around tussock grasses in a tropical grassland[J]. Applied Soil Ecology,1999,13(3):259-270 [24] Watt AS. A comparison of grazed and ungrazed Grassland A in East Anglian Breckland[J].Journal of Ecology,1981,69(2):499-508 [25] 张成霞,南志标. 不同放牧强度下陇东天然草地土壤微生物三大类群的动态特征[J]. 草业科学,2010,27(11):131-136 [26] Cai Y,Wang X,Tian L,et al. The impact of excretal returns from yak and Tibetan sheep dung on nitrous oxide emissions in an alpine steppe on Qinghai-Tibetan Plateau[J]. Soil Biology and Biochemistry,2014,76(1):90-99 [27] Cuchillo-Hilario M,Wrage-Mönnig N,Isselstein J. Forage selectivity by cattle and sheep co-grazing swards differing in plant species diversity[J]. Grass Forage Science,2017,73(2):320-329 [28] Tan G L,Shu W S,Hallberg K B,et al. Culturable and molecular phylogenetic diversity of microorganisms in an open-dumped,extremely acidic Pb/Zn mine tailings[J]. Extremophiles,2008,12(5):657-664 [29] Fu S F,He S,Shi X S,et al. The chemical properties and microbial community characterization of the thermophilic microaerobic pretreatment process[J]. Bioresource Technology,2015,198(1):497-502 [30] Caporaso J G,Kuczynski J,Stombaugh J,et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods,2010,7(5):335-336 [31] Fierer N,Hamady M,Lauber C L,et al. The influence of sex,handedness,and washing on the diversity of hand surface bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(46):17994-17999 [32] Edgar R C. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics,2010,26(19):2460-2461 [33] Magurran A E. Ecological diversity and its measurement[M]. Princeton:Princeton University Press,1988:145-179 [34] Alatalo R V. Problems in the measurement of evenness in ecology[J]. Oikos,1981,37(2):199-204 [35] 王天乐,卫智军,刘文婷,等. 不同放牧强度下荒漠草原土壤养分和植被特征变化研究[J].草地学报,2017,25(4):711-716 [36] Eldridge D J,Delgado-Baquerizo M. Continental-scale impacts of livestock grazing on ecosystem supporting and regulating services[J]. Land Degradation & Development,2017,28:1473-1481 [37] Tilman D,Wedin D,Knops J. Productivity and sustainability influenced by biodiversity in grassland ecosystems[J]. Nature,1996,379(6567):718-720 [38] Mcsherry M E,Ritchie M E. Effects of grazing on grassland soil carbon:a global Review[J].Global Change Biology,2013,19(5):1347-1357 [39] Zhou G,Zhou X,He Y,et al. Grazing intensity significantly affects belowground carbon nitrogen cycling in grassland ecosystems:a meta-analysis[J]. Global Change Biology,2017,23(3):1167-1179 [40] Gao Y,Schumann M,Chen H,et al. Impacts of grazing intensity on soil carbon and nitrogen in an alpine meadow on the eastern Tibetan Plateau[J]. Journal of Food,Agriculture & Environment,2009,7(2):749-754 [41] 张建文. 牦牛和藏羊放牧及模拟践踏对天祝高寒草甸凋落物化学计量特征的影响[D].兰州:甘肃农业大学,2016:39-41 [42] Ma W,Ding K,Li Z. Comparison of soil carbon and nitrogen stocks at grazing-excluded and yak grazed alpine meadow sites in Qinghai-Tibetan Plateau,China[J]. Ecological Engineering,2016,87:203-211 [43] Yang Z,Baoyin T,Minggagud H,et al. Recovery succession drives the convergence,and grazing versus fencing drives the divergence of plant and soil N/P stoichiometry in a semiarid steppe of Inner Mongolia[J]. Plant Soil,2017,420(1-2):303-314 [44] 周国利,程云湘,马青青,等. 牦牛放牧强度对青藏高原东缘高寒草甸群落结构与土壤理化性质的影响[J]. 草业科学,2019,36(04):1022-1031+918 [45] Cheng Y,Cai Y,Wang S Q. Yak and Tibetan sheep dung return enhance soil N supply and retention in two alpine grasslands in the Qinghai-Tibetan Plateau[J]. Biology and Fertility of Soils,2016,52(3):413-422 [46] Mcdowell RW,tewart I. Phosphorus in fresh and dry dung of grazing dairy cattle,deer,and sheep:sequential fraction and phosphorus-31 nuclear magnetic resonance analyses[J].Journal of Environmental Quality,2005,34(2):598-607 [47] Crowther T W,Thomas S M,Maynard D,et al. Biotic interactions mediate soil microbial feedbacks to climate change[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(2):7033-7038 [48] Bagchi S,Ritchie M E. Introduced grazers can restrict potential soil carbon sequestration through impacts on plant community composition[J]. Ecology Letter,2010,13(8):959-968 [49] Manzano M G,Návar J. Processes of desertification by goats overgrazing in the Tamaulipan thornscrub (matorral) in north-eastern Mexico[J]. Journal of Arid Environments,2000,44(1):0-17 [50] Osono T. Ecology of ligninolytic fungi associated with leaf litter decomposition[J]. Ecological Research,2007,22(6):955-974 [51] Tian C,Chen J,Yang Z. Phylogenetic diversity of microbes and its perspectives in conservation biology[J]. Plant & Soil,2016,407(1):1-15 [52] 尹亚丽,王玉琴,李世雄,等. 围封对退化高寒草甸土壤微生物群落多样性及土壤化学计量特征的影响[J]. 应用生态学报,2019,30(1):127-136 [53] 杨思维,张德罡,牛钰杰,等. 短期放牧对高寒草甸表层土壤入渗和水分保持能力的影响[J]. 水土保持学报,2016,30(4):96-101 |