[1] Small E,Jomphe M. A synopsis of the genus Medicago (Leguminosae)[J]. Canadian Journal of Botany,1989,7(11):3260-3294 [2] 武自念,侯向阳,任卫波,等. 气候变化背景下我国扁蓿豆潜在适生区预测[J]. 草地学报,2018,26(4):898-906 [3] 乌日娅,雍世鹏,包贵平. 扁蓿豆属植物在内蒙古的生态地理分布[J]. 中国草地,1996,2:5-6 [4] Li J,Li H Y,Chi E H,et al. Development of simple sequence repeat (SSR) markers in Medicago ruthenica and their application for evaluating outcrossing fertility under open-pollination conditions[J]. Molecular Breeding,2018,38:143 [5] Wu X P,Liu D M,Gulzar K, et al. Population genetic structure and demographic history of Medicago ruthenica (Fabaceae) on the Qinghai-Tibetan Plateau based on nuclear ITS and chloroplast markers[J]. Biochemical Systematics and Ecology,2016,69:204-212 [6] 黄迎新,周道玮,岳秀泉,等. 扁蓿豆研究进展[J]. 草业科学,2007,24(12):34-39 [7] 李鸿雁,李志勇,师文贵,等. 6种豆科牧草叶片解剖性状与抗旱性关系研究[J]. 西北植物学报,2010,30(10):1989-1994 [8] 石凤翎,郭晓霞,李红. 扁蓿豆抗旱形态解剖结构观察与分析[J]. 干旱地区农业研究,2005,23(2):115-118 [9] 王照兰,杜建材,胡卉芳,等. 扁蓿豆不同品系对水分亏缺的生理响应[C]//中国草学会.中国草学会青年工作委员会学术研讨会论文集,北京:中国草学会,2007:375-379 [10] 杜宝红,石凤翎,王晓英. 扁蓿豆根系及根颈形态变化与抗寒性关系的初步研究[J]. 农业与技术,2018,38(18):17-18 [11] 李小安,周青平. 低温胁迫对扁蓿豆的脯氨酸含量和POD、SOD酶活性的影响[J]. 青海大学学报(自然科学版),2009,27(1):60-63 [12] 钟华,董洁,董宽虎. 盐胁迫对扁蓿豆幼苗脯氨酸积累及其代谢关键酶活性的影响[J]. 草业学报,2018,27(4):189-194 [13] Shu Y J,Li W,Zhao J Y,et al. Transcriptome sequencing and expression profiling of genes involved in the response to abiotic stress in Medicago ruthenica[J]. Genetics and Molecular Biology,2018,41:638-648 [14] 马超,沈迎芳,吴小培,等. 扁蓿豆MrLEA2基因的克隆和原核表达[J]. 西北植物学报,2014,24(10):1944-1950 [15] 沈迎芳,马超,吴小培,等. 扁蓿豆SK2型脱水素基因MrDHN3的异源表达提高大肠杆菌对盐和高温胁迫的抗性[J]. 草业学报,2016,25(8):118-127 [16] Campbell T A,Bao G,Xia Z L. Agronomic evaluation of Medicago ruthenica collected in Inner Mongolia[J]. Crop Science,1997,37:599-604 [17] 王殿魁,李红,罗新义. 扁蓿豆与紫花苜蓿杂交育种研究[J]. 草地学报,2008,16(5):458-465 [18] Smith E F,Townsend C O. A plant-tumor of bacterial origin[J]. Science,1907,25(643):671-673 [19] Boisson-Dernier A,Chabaud M,Garcia F, et al. Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations[J]. Molecular Plant-Microbe Interactions,2001,14(6):695-700 [20] 熊笙屹,厍润祥,张璐,等. 转基因植物发根农杆菌研究的进展及应用[J]. 农业与技术,2017,37(16):72-74 [21] 徐洪伟.发根农杆菌诱导玉米毛状根再生植株及抗旱性研究[D]. 长春:东北师范大学,2007:28-43 [22] 徐悦,曹英萍,王玉,等. 发根农杆菌介导的菠菜毛状根遗传转化体系的建立[J]. 植物学报,2019,54(4):515-521 [23] 齐香君,郭乐康,陈秀清.黄芩毛状根的生长与产物代谢动态研究[J]. 安徽农业科学,2008,36(30):13226-13227 [24] Ding Y,Kalo P,Yendrek C,et al. Abscisic acid coordinates nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula[J]. Plant Cell,2008,20:2681-2695 [25] de Zelicourt A,Diet A,Marion J, et al. Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence[J]. Plant Journal,2012,70:220-230 [26] 吴萼,张瑞,张超,等. 发根农杆菌Ri质粒介导的植物基因工程及应用[J]. 杭州师范大学学报(自然科学版),2018,17(5):520-554 [27] Meng Y,Hou Y,Wang H,et al. Targeted mutagenesis by CRISPR/Cas9 system in the model legume Medicago truncatula[J]. Plant Cell Reports,2017,36:371-374 |