草地学报 ›› 2020, Vol. 28 ›› Issue (5): 1203-1215.DOI: 10.11733/j.issn.1007-0435.2020.05.004
孙韵雅, 陈佳, 王悦, 程济南, 韩庆庆, 赵祺, 李惠茹, 李慧萍, 何傲蕾, 缑晶毅, 吴永娜, 牛舒琪, 索升州, 李静, 张金林
收稿日期:
2020-02-06
修回日期:
2020-04-14
出版日期:
2020-10-15
发布日期:
2020-09-19
通讯作者:
张金林
作者简介:
孙韵雅(1999-),大学本科,主要从事根际促生菌与植物抗逆性研究,E-mail:sunyy2017@lzu.edu.cn;陈佳(1996-),硕士研究生,主要从事根际促生菌与植物抗逆性研究,E-mail:jchen19@lzu.edu.cn。
基金资助:
SUN Yun-ya, CHEN Jia, WANG Yue, CHENG Ji-nan, HAN Qing-qing, ZHAO Qi, LI Hui-ru, LI Hui-ping, HE Ao-lei, GOU Jing-yi, WU Yong-na, NIU Shu-qi, SUO Sheng-zhou, LI Jing, ZHANG Jin-lin
Received:
2020-02-06
Revised:
2020-04-14
Online:
2020-10-15
Published:
2020-09-19
摘要: 植物根际促生菌具有促进植物生长、提高作物产量及诱导植物产生系统抗性来抵御生物和非生物胁迫的作用。目前,随着绿色可持续现代农业的大力发展,微生物菌肥成为备受青睐的新型肥料。因此,有关根际促生菌的分离、鉴定、与植物的互作机制以及利用根际促生菌制备微生物肥料等方面的研究日益受到重视。本文系统综述了根际促生菌促进植物生长的机理(包括固氮、溶磷、解钾、溶铁、分泌植物激素、释放挥发性物质等)和增强植物抵御生物胁迫(包括病原菌、害虫等)及非生物胁迫(干旱、盐害、重金属等)方面的研究进展,并针对根际促生菌的未来研究方向进行了展望。
中图分类号:
孙韵雅, 陈佳, 王悦, 程济南, 韩庆庆, 赵祺, 李惠茹, 李慧萍, 何傲蕾, 缑晶毅, 吴永娜, 牛舒琪, 索升州, 李静, 张金林. 根际促生菌促生机理及其增强植物抗逆性研究进展[J]. 草地学报, 2020, 28(5): 1203-1215.
SUN Yun-ya, CHEN Jia, WANG Yue, CHENG Ji-nan, HAN Qing-qing, ZHAO Qi, LI Hui-ru, LI Hui-ping, HE Ao-lei, GOU Jing-yi, WU Yong-na, NIU Shu-qi, SUO Sheng-zhou, LI Jing, ZHANG Jin-lin. Advances in Growth Promotion Mechanisms of PGPRs and Their Effects on Improving Plant Stress Tolerance[J]. Acta Agrestia Sinica, 2020, 28(5): 1203-1215.
[1] 王博,徐志宇,王楷,等. 1961-2015年各国化肥消费量与人均GDP相关性分析[J]. 农业资源与环境学报,2019,36(6):718-727 [2] Chen X P,Cui Z L,Vitousek P M,et al. Integrated soil-crop system management for food security[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(16):6399-6404 [3] 程国强,汪苏. 中国粮食安全真问题[J]. 中国改革,2015,(3):32-36 [4] 缑晶毅,索升州,姚丹,等. 微生物肥料研究进展及其在农业生产中的应用[J]. 安徽农业科学,2019,47(11):13-17 [5] Raaijmakers J M,Mazzola M. Ecology Soil immune responses[J]. Science,2016,352(6292):1392-1393 [6] Bakker P A H M,Pieterse C M J,de Jonge R,et al. The soil-borne legacy[J]. Cell,2018,172(6):1178-1180 [7] Bhattacharyya P N,Jha D K. Plant growth-promoting rhizobacteria (PGPR):emergence in agriculture[J]. World Journal of Microbiology Biotechnology,2012,28(4):1327-1350 [8] Vejan P,Abdullah R,Khadiran T,et al. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review[J]. Molecules,2016,21(5):573 [9] Backer R,Rokem J S,Ilangumaran G,et al. Plant Growth-Promoting Rhizobacteria:Context,Mechanisms of Action,and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture[J]. Frontiers in plant science,2018,9:1473 [10] Raymond J,SiefertJ L,Staples C R,et al. The natural history of nitrogen fixation[J]. Molecular biology and evolution,2004,21(3):541-554 [11] 张武,杨琳,王紫娟. 生物固氮的研究进展及发展趋势[J]. 云南农业大学学报,2015,30(5):810-821 [12] Ahemad M,Khan M S. Alleviation of fungicide-induced phytotoxicity in green gram[Vigna radiata (L.) Wilczek] using fungicide-tolerant and plant growth promoting Pseudomonas strain[J]. Saudi Journal of Biological Sciences,2012,19(4):451-459 [13] Giordano W,Hirsch A M. The expression of MaEXP1,a Melilotus alba expansin gene,is upregulated during the sweet clover-Sinorhizobium meliloti interaction[J]. Molecular Plant-Microbe Interactions,2004,17(6):613-622 [14] Glick B R. Plant Growth-promoting bacteria:mechanisms and applications[J]. Scientifica,2012,2012(5):1-15 [15] Mishra P K,Mishra S,Selvakumarb G,et al. Enhanced soybean (Glycine max L.) plant growth and nodulation by Bradyrhizobium japonicum-SB1 in presence of Bacillus thuringiensis-KR1[J]. Acta Agriculturae Scandinavica Section B-Soil and Plant Science,2009,59(2):189-196 [16] 马文彬,姚拓,荣良燕,等. 无外源氮素条件下接种促生菌对箭筈豌豆生长及根系特性影响[J]. 草地学报,2015,23(3):496-501 [17] Giller K E,Cadisch G. Future benefits from biological nitrogen fixation:an ecological approach to agriculture[J]. Plant and Soil,1995,174(1-2):255-277 [18] Ledgard S F. Transfer of fixed nitrogen from white clover to associated grasses in swards grazed by dairy cows,estimated using 15N methods[J]. Plant and Soil,1991,131(2):215-223 [19] Barney A G,Ponraj P,Amelie J,et al. Engineering transkingdom signaling in plants to control gene expression in rhizosphere bacteria[J]. Nature Communications,2019,10(1):3430 [20] Boddey R M,Oliveira O C D,Urquiaga S R,et al.Biological nitrogen fixation associated with sugarcane and rice:contribution and prospects for improvement[J]. Plant and Soil,1995,174(1-2):195-209 [21] Zhang J Y,Liu Y X,Zhang N,et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice[J]. Nature Biotechnology,2019,37:676-684 [22] 王孝林,王二涛. 根际微生物促进水稻氮利用的机制[J]. 植物学报,2019,54(3):1-3 [23] Stevenson F J,Cole M A. Cycles of soils:carbon,nitrogen,phosphorus,sulfur,micronutrients,2nd Edition[J]. Humus Chemistry Genesis Composition Reactions,1999,135(6):642 [24] Rodríguez H,Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion[J]. Biotechnology Advances,1999,17(4-5):319-339 [25] Zaidi A,Khan M S,Ahemad M,et al. Plant growth promotion by phosphate solubilizing bacteria[J]. Acta microbiologica et immunologica Hungarica,2009,56(3):263-284 [26] 李琦,姚拓,阿不满,等. 根际促生菌微胶囊剂研发及对苜蓿、燕麦促生效果评价[J]. 草地学报,2019,27(5):1392-1399 [27] 李建宏,李雪萍,李昌宁,等. 一株植物根际促生菌Gnyt1的特性研究及分类地位的确定[J]. 草业学报,2019,28(5):55-67 [28] Mohammadi K. Phosphorus solubilizing bacteria:occurrence,mechanisms and their role in crop production[J]. Resources and Environment,2012,2(1):80-85 [29] Ahemad M,Khan M S. Phosphate-solubilizing and plant-growth-promoting Pseudomonas aeruginosa PS1 improves green-gram performance in quizalafop-p-ethyl and clodinafop amended soil[J]. Archives of Environmental Contamination Toxicol,2010,58(2):361-372 [30] Ahemad M,Khan M S. Pseudomonas aeruginosa strain PS1 enhances growth parameters of greengram[Vigna radiata (L.) Wilczek] in insecticide-stressed soils[J]. Journal of Pest Science,2011,84(1):123-131 [31] Poonguzhali S,Madhaiyan M,Sa T. Isolation and identification of phosphate solubilizing bacteria from chinese cabbage and their effect on growth and phosphorus utilization of plants[J]. Journal of microbiology and biotechnology,2008,18(4):773-777 [32] Chen Z,Ma S,Liu L L. Studies on phosphorus solubilizing activity of a strain of phosphobacteria isolated from chestnut type soil in China[J]. Bioresource Technology,2008,99(14):6702-6707 [33] Zaidi A,Khan M S. Interactive effect of rhizospheric microorganisms on growth,yield and nutrient uptake of wheat[J]. Journal of plant Nutrition,2005,28(12):2079-2092 [34] Vikram A,Hamzehzarghani H. Effect of phosphate solubilizing bacteria on nodulation and growth parameters of greengram (Vigna radiate L. Wilczec)[J]. Research Journal of Microbiology,2008,3(2):62-72 [35] Zaidi S,Usmani S,Singh B R,et al. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea[J]. Chemosphere,2006,64(6):991-997 [36] Hameeda B,Harini G,Rupela O P,et al. Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna[J]. Microbiological Research,2008,163(2):234-242 [37] Verma S C,Ladha J K,Tripathi A K. Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice[J]. Journal of Biotechnology,2001,91(2):127-141 [38] Kuklinsky-Sobral J,Araújo W L,Mendes R,et al. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion[J]. Environmental Microbiology,2004,6(12):1244-1251 [39] Suman A,Shasany A K,Singh M,et al. Molecular assessment of diversity among endophytic diazotrophs isolated from subtropical Indian sugarcane[J]. World Journal Microbiology Biotechnology,2001,17:39-45 [40] Ahmad F,Ahmad I,Khan M S. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities[J].Microbiological Research,2008,163(2):173-181 [41] 盛下放,黄为一. 硅酸盐细菌NBT菌株解钾机理初探[J]. 土壤学报,2002,39(6):863-871 [42] 林启美,饶正华,孙焱鑫,等. 硅酸盐细菌的筛选及其对番茄营养的影响[J]. 中国农业科学,2002,35(1):59-62 [43] 席琳乔,宋爱民,龚明福,等. 棉花根际硅酸盐细菌解钾机理的初步研究[J]. 西北农业学报,2009,18(3):309-314 [44] 刘五星,徐旭士,杨启银,等. 胶质芽孢杆菌对土壤矿物的分解作用及机理研究[J]. 土壤,2004,36(5):547-550 [45] Rajkumar M,Ae N,Prasad M N V,et al. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction[J]. Trends in Biotechnology,2010,28(3):142-149 [46] Neilands J B. Siderophores:structure and function of microbial iron transport compounds[J]. Journal of Biological Chemistry,1995,270(45):26723-26726 [47] Indiragandhi P,Anandham R,Madhaiyan M,et al. Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella(Lepidoptera:Plutellidae)[J]. Current microbiology,2008,56(4):327-333 [48] Freitas M A,Medeiros F H,Carvalho S P,et al. Augmenting iron accumulation in cassava by the beneficial soil bacterium Bacillus subtilis(GB03)[J]. Frontiers in Plant Science,2015,6:596 [49] Zhang H,Sun Y,Xie X,et al. A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms[J]. Plant Journal,2009,58(4):568-577 [50] Taghavi S,Garafola C,Monchy S,et al. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees[J]. Applied and Environment Microbiology,2009,75(3):748-57 [51] Tanimoto E. Regulation of root growth by plant hormones-roles for auxin and gibberellin[J]. Critical Reviews in Plant Sciences,2005,24(4):249-265 [52] 宋金秋,刘淑娇,崔丽红,等. 根际细菌溶磷、产IAA及其抑菌作用的研究[J]. 基因组学与应用生物学,2017,36(11):4722-4728 [53] Vessey J K. Plant growth promoting rhizobacteria as biofertilizers[J]. Plant and Soil,2003,255:571-586 [54] Spaepen S,Vanderleyden J. Auxin and plant-microbe interactions[J]. Cold Spring Harbor Perspectives in Biology,2011,3(4):704-704 [55] Asghar H N,Zahir Z A,Arshad M. Screening rhizobacteria for improving the growth,yield and soil content of canola (Brassica napus L.)[J]. Australian Journal of Agricultural Research,2004,55(2):187-194 [56] Sheng X F,Xia J J. Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria[J]. Chemosphere,2006,64(6):1036-1042 [57] Belimov A A,Hontzeas N,Safronova V I,et al. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.)[J]. Soil Biology& Biochemistry,2005,37(2):241-250 [58] Bent E,Tuzun S,Chanway C P,et al. Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria[J]. Canadian Journal of Microbiology,2001,47(9):793-800 [59] Salisbury F B. The role of plant hormones plant environment interactions[J]. The Role of Plant Hormones in Plant Environment Interactions,1994,39-81 [60] 贾小明. 微生物产生的细胞分裂素[J]. 微生物学通报,1996,23(4):230-235 [61] 罗超,黄世文,王菡,等. 细胞分裂素的生物合成、受体和信号转导的研究进展[J]. 特产研究,2011,33(2):71-75 [62] Noel T C,Sheng C,Yost C K,et al. Rhizobium leguminosarum as a plant growth-promoting rhizobacterium:direct growth promotion of canola and lettuce[J]. Canadian Journal of Microbiology,1996,42(3):279-283 [63] Timmusk S,Nicander B,Granhall U,et al. Cytokinin production by Paenibacillus polymyxa[J]. Soil Biology & Biochemistry,1999,31(13):1847-1852 [64] de Salamone G D,Hynes R K,Nelson LM. Cytokinin production by plant growth promoting rhizobacteria and selected mutants[J]. Canadian Journal of Microbiology,2001,47(5):404-411 [65] Arkhipova T N,Prinsen E,Veselov S U,et al. Cytokinin producing bacteria enhance plant growth in drying soil[J]. Plant and Soil,2007,292(1-2):305-315 [66] 李保珠,赵翔,安国勇. 赤霉素的研究进展[J]. 中国农学通报,2011,27(1):1-5 [67] Gutiérrez-Mañero F J,Ramos-Solano A B,Probanza A,et al. The plant growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins[J]. Physiologia Plantarum,2001,111(2):206-211 [68] 牛舒琪. 梭梭根际促生细菌调控黑麦草生长和抗逆性的生理研究[D]. 兰州:兰州大学,2017:22 [69] Khalid A,Akhtar M J,Mahmood M H,et al. Effect of substrate-dependent microbial ethylene production on plant growth[J]. Microbiology,2006,75(2):231-236 [70] Mayak S,Tirosh T,Glick B R. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress[J]. Plant Physiology and Biochemistry,2004,42(6):565-572 [71] Mastretta C,Barac T,Vangronsveld J,et al. Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments[J]. Biotechnology and Genetic Engineering Reviews,2006,23(1):175-188 [72] Arshad M,Saleem M,Hussain S. Perspectives of bacterial ACC deaminase in phytoremediation[J]. Trendsin Biotechnology,2007,25(8):356-362 [73] Nadeem S M,Zahir Z A,Arshad M,et al. Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields[J]. Canadian Journal of Microbiology,2009,55(11):1302-1309 [74] Zahir Z A,Munir A,Asghar H N,et al. Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of pea (Pisum sativum) under drought conditions[J]. Journal Microbiology & Biotechnology,2008,18(5):958-963 [75] Shaharoona B,Naveed M,Arshad M,et al. Fertilizer-dependent efficiency of Pseudomonads for improving growth,yield,and nutrient use efficiency of wheat (Triticum aestivum L.)[J]. Applied Microbiology & Biotechnology,2008,79(1):147-155 [76] Dell' Amico E,Cavalca L,Andreoni V. Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil,and screening of metal-resistant,potentially plant growth-promoting bacteria[J]. FEMS Microbiology Ecology,2005,52(2):153-162 [77] Ryu C M,Farag M A,Hu C H,et al. Bacterial volatiles promote growth in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(8):4927-4932 [78] Wu Y N,Feng Y L,Paul W P,et al. Beneficial soil microbe promotes seed germination,plant growth and photosynthesis in herbal crop Codonopsis pilosula[J]. Crop & Pasture Science,2016,67(1):91-98 [79] Thair H A S,Gu Q,Wu H J,et al. Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2[J]. Frontiers in Microbiology,2017,8(e48744):171 [80] Jiang Q,Xiao J,Zhou C H,et al. Complete genome sequence of the plant growth-promoting,rhizobacterium Pseudomonas aurantiaca strain JD37[J]. Journal of Biotechnology,2014,192:85-86 [81] Kong C H,Zhang S Z,Li Y H,et al. Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals[J]. Nature Communications,2018,9(1):3867 [82] Ryu C M. Bacterial Volatiles Induce Systemic Resistance in Arabidopsis[J]. Plant Physiology,2004,134(3):1017-1026 [83] Kwon Y S,Ryu C M,Lee S,et al. Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles[J]. Planta,2010,232(6):1355-1370 [84] 陈华,郑之明,余增亮. 枯草芽孢杆菌JA脂肽类及挥发性物质抑菌效应的研究[J]. 微生物通报,2008,35(1):1-4 [85] Flavio H V M,Ricardo M S,Fernanda C L M,et al.Transcriptional profiling in cotton associated with Bacillus subtilis (UFLA285) induced biotic-stress tolerance[J]. Plant and Soil,2011,347:327-337 [86] 戴梅,王洪娴,殷元元,等. 丛枝菌根真菌与根围促生细菌相互作用的效应与机制[J]. 生态学报,2008,28(6):2854-2860 [87] 黄秋斌,张颖,刘凤英,等. 蜡样芽孢杆菌B3-7在大田小麦根部的定殖动态及其对小麦纹枯病的防治效果[J]. 生态学报,2014,34(10):2559-2566 [88] Alstrom S. Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere pseudomonas[J]. Journal of General andApplied Microbiology,1991,37(6):495-501 [89] Kwak M J,Kong H G,Choi K Y,et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato[J]. Nature Biotechnology,2018,36:1100-1109 [90] Mina A,Ranjith K N,Xie X T,et al. Augmenting sulfur metabolism and herbivore defense in Arabidopsis by bacterial volatile signaling[J]. Frontiers in Plant Science,2016,7:458 [91] 韩岚岚,宋福平,张杰,等. 苏云金芽孢杆菌杀虫晶体蛋白对棉铃虫活性分析[J]. 东北农业大学学报,2008,39(8):21-24 [92] Wang W,Vinocur B,Altman A. Plant responses to drought,salinity and extreme temperatures:towards genetic engineering for stress tolerance[J]. Planta,2003,218(1):1-14 [93] 王国基,柴强,张玉霞,等. 干旱区玉米专用菌肥对玉米生长特性的影响[J]. 草地学报,2015,23(1):173-179 [94] Lim J H,Kim S D. Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper[J]. Plant Pathology Journal,2013,29(2):201-208 [95] Vurukonda S S,Vardharajula S,Shrivastava M,et al. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria[J]. Microbiological Research,2016,184:13-24 [96] Praveen K G,Mir S K,Desai S,et al. In vitro screening for abiotic stress tolerance inpotent biocontrol and plant growth promoting strains of Pseudomonas and Bacillus spp[J].International Journal of Bacteriology,2014,2014(11):195946 [97] Dimkpa C,Weinand T,Ash F. Plant-rhizobacteria interactions alleviate abiotic stress conditions[J].Plant Cell & Environment,2009,32(12):1682-1694 [98] Mantelin S,Touraine B. Plant growth-promoting bacteria and nitrate availability impacts on root development and nitrate uptake[J]. Journal of Experimental Botany,2004,55(394):27-34 [99] 刘方春,马海林,马丙,等. 干旱环境下接种根际促生细菌对核桃苗光合特性的影响[J]. 林业科学,2015,51(7):84-90 [100] Creus C M,Sueldo R J,Barassi C A. Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field[J]. Canadian Journal of Botany,2004,82(2):273-281 [101] Gontia-Mishra I,Sapre S,Sharma A,et al. Amelioration of drought tolerance in wheat by the interaction of plant growth-promoting rhizobacteria[J]. Plant Biology,2016,18(6):992-1000 [102] Bresson J,Varoquaux F,Bontpart T,et al. The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis[J]. New Phytologist,2013,200(2):558 [103] Cho S M,Kang B R,Han S H,et al. 2R,3R-Butanediol,a bacterial volatile produced by Pseudomonas chlororaphis O6,is involved in induction of systemic tolerance to drought in Arabidopsis thaliana[J]. MolecularPlant-Microbe Interactions,2008,21(8):1067-1075 [104] Mayak S,Tirosh T,Glick B R. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers[J]. Plant Science,2002,166(2):525-530 [105] Wang C J,Yang W,Wang C,et al. Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains[J]. PLOS One,2012,7(12):e52565 [106] Su A Y,Niu S Q,Liu Y Z,et al. Synergistic effects of Bacillus amyloliquefaciens (GB03) and water retaining agent on drought tolerance of perennial ryegrass[J]. International Journal of Molecular Science,2017,18(12):2651 [107] Franciska T de V,Rob I G,Christopher G K,et al. Harnessing rhizosphere microbiomes for drought-resilient crop production[J]. Science,2020,368:270-274 [108] Munns R,Gilliham M. Salinity tolerance of crops-what is the cost?[J]. New Phytologist,2015,208:668-673 [109] Qin Y D,Druzhinina I S,Pan X,et al. Microbially mediated plant salt tolerance andmicrobiome-based solutions for saline agriculture[J]. Biotechnology Advances,2016,34(7):1245-1259 [110] Grover M,Ali SZ,Sandhya V,et al. Role of microorganisms in adaptation of agriculture crops to abiotic stresses[J]. World Journal of Microbiology and Biotechnology,2011,27(5):1231-1240 [111] Han Q Q,Lü X P,Bai J P,et al. Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover[J]. Frontiers in Plant Science,2014,5:525 [112] Rojas-Tapias D,Moreno-Galvan A,Pardo-Diaz S,et al. Effect of inoculation with plant growth-promoting bacteria (PGPB)on amelioration of saline stress in maize (Zea mays)[J]. Applied Soil Ecology,2012,61:264-272 [113] Ashraf M,Hasnain S,Berge O,et al. Inoculating wheat seedlings with xopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growthunder salt stress[J]. Biology and Fertility of Soils,2004,40(3):157-162 [114] Cheng Z,Woody O Z,McConkey B J,et al. Combined effects of the plant growth-promoting bacterium Pseudomonas putida UW4 and salinity stress on the Brassica napus proteome[J].Applied Soil Ecology,2012,61:255-263 [115] Barassi C A,Ayrault G,Creus C M,et al. Seed inoculation with Azospirillum mitigates NaCl effects on lettuce[J]. Scientia Horticulturae,2006,109(1):8-14 [116] Zhang J L,Flowers T J,Wang S M. Mechanisms of sodium uptake by roots of higher plants[J].Plant and Soil,2010,326(1-2):45-60 [117] Niu S Q,Li H R,Paul W P,et al. Induced growth promotion and higher salt tolerance in the halophyte grass Puccinellia tenuiflora by beneficial rhizobacteria[J]. Plant and Soil,2016,407:217-230 [118] Han Q Q,Wu Y N,Gao H J,et al. Improved salt tolerance of medicinal plant Codonopsis pilosula by Bacillus amyloliquefaciens GB03[J]. Acta Physiologiae Plantarum,2017,39:35 [119] 韩庆庆,贾婷婷,吕昕培,等. 枯草芽孢杆菌GB03对紫花苜蓿耐盐性的影响[J]. 植物生理学报,2014,50(9):1423-1428 [120] Zhang J L,Aziz M,Qiao Y,et al. Soil microbe Bacillus subtilis (GB03) induces biomass accumulation and salt tolerance with lower sodium accumulation in wheat[J]. Crop & Pasture Science,2014,65(5):423-427 [121] Upadhyay S K,Singh D P. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment[J]. Plant Biology,2015,17(1):288-293 [122] Jennifer K,Caitlyn M N,Zachary T A,et al. Salt-tolerant halophyte rhizosphere bacteria stimulate growth of alfalfa in salty soil[J]. Frontiers in Microbiology,2019,10:01849 [123] He A L,Niu SQ,Zhao Q,et al. Induced salt tolerance of perennial ryegrass by a novel bacterium strain from the rhizosphere of a desert shrub Haloxylon ammodendron[J]. International Journal of Molecular Science,2018,19(2):469 [124] Vaishnav A,Kumari S,Jain S,et al. Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress[J]. Journal of Applied Microbiology,2015,119(2):539-551 [125] Ahmad M,Zahir Z A,Khalid M,et al. Efficacy of Rhizobium and Pseudomonas strains to improve physiology,ionic balance and quality of mung bean under salt-affected conditions on farmer's fields[J]. Plant Physiology and Biochemistry,2013,63:170-176 [126] Bhattacharyya D,Yu S M,Lee Y H. Volatile compounds from Alcaligenes faecalis JBCS1294 confer salt tolerance in Arabidopsis thaliana through the auxin and gibberellin pathways and differential modulation of gene expression in root and shoot tissues[J]. Plant Growth Regulation,2015,75(1):1-10 [127] Zvinavashe A T,Lim E,Sun H,et al. A bioinspired approach to engineer seed microenvironment to boost germination and mitigate soil salinity[J]. Proceedings of the National Academy of Sciences of the United States of America,2019,116(51):25555-25561 [128] Hamaoui B,Abbadi J,Burdman S,et al. Effects of inoculation with Azospirillum brasilense on chickpeas (Cicer arietinum) and faba beans (Vicia faba) under different growth conditions[J]. Agronomie,2001,21:553-560 [129] Hamdia M A E S,Shaddad M A K,Doaa M M. Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions[J]. Plant Growth Regulation,2004,44(2):165-174 [130] Saravanakumar D,Samiyappan R. ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants[J]. Journal of Applied Microbiology,2007,102(5):1283-1292 [131] Nadeem S M,Zahir Z A,Arshad M,et al. Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity[J]. Canadian Journal of Microbiology,2007,53(10):1141-1149 [132] Zhang H,Kim M S,Sun Y. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1[J]. Molecular Plant-Microbe Interactions,2008,21(7):737-744 [133] Dardanelli M S,Espuny M R,Okon Y,et al. Effect of Azospirillum brasilense coinoculated with rhizobium on Phaseolus vulgaris flavonoids and nod factor production under salt stress[J]. Soil Biology and Biochemistry,2008,40(11):2713-2721 [134] Kohler J,Hernández J A,Caravaca F,et al. Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to sever salt stress[J]. Environmental and Experimental Botany,2009,65(2):245-252 [135] Omar M N A,Osman M E H,Kasim W A,et al. Improvement of salt tolerance mechanism of barely cultivated under salt stress using Azospirillum brasilense[M]. Berlin:Springer verlag,2009:133-147 [136] Marulanda A,Azcón R,Chaumont F,et al. Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions[J]. Planta,2010,232(2):533-543 [137] Jha Y,Subramanian R B. Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline condition[J]. Chilean Journal of Agricultural Research,2013,73(3):213-219 [138] Mohamed E A,Mohamed A,Emad A A,et al. Piriformospora indica alters Na+/K+ homeostasis,antioxidant enzymes and LeNHX1 expression of greenhouse tomato grown under salt stress[J]. Scientia Horticulturae,2019,256:108532 [139] 江绪文,李贺勤,谭勇. 藿香内生细菌HX-2的鉴定、耐性及对宿主植物的促生作用[J]. 草业学报,2018,27(1):161-168 [140] 赵会会,方志刚,马睿,等. 耐镉根际促生菌的筛选及其对一年生黑麦草镉吸收积累的影响[J]. 草地学报,2017,25(3):554-560 [141] Duruibe J,Ogwuegbu M,Egwurugwu J. Heavy metal pollution and human biotoxic effects[J].International Journal of Physical Science,2007,2(5):112-118 [142] Abdullah M,Fasola M,Muhammad A,et al. Avian feathers as a non-destructivebio-monitoring tool of trace metals signatures:a case study from severely contaminated areas[J]. Chemosphere,2015,119:553-556 [143] 唐东民,伍钧,唐勇,等. 重金属胁迫对植物的毒害及其抗性机理研究进展[J]. 四川环境,2008,27(5):79-83 [144] 李洋,于丽杰,金晓霞. 植物重金属胁迫耐受机制[J]. 中国生物工程杂志,2015,35(9):94-104 [145] Jing Y,He Z,Yang X. Role of soil rhizobacteria in phytoremediation of heavy metal contaminatedsoils[J]. Journal of Zhejiang University-Science B,2007,8(3):192-207 [146] Marco P D,Pacheco C C,Figueiredo A R. Novel pollutant-resistant methylotrophic bacteria for use in bioremediation[J]. FEMS Microbiology Letters,2004,234(1):75-80 [147] Madhaiyan M,Poonguzhali S,Sa T. Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.)[J]. Chemosphere,2007,69(2):220-228 [148] Pishchik V N,Provorov N A,Vorobyov N I. Interactions between plants and associated bacteria in soils contaminated with heavy metals[J]. Microbiology,2009,78(6):785-793 [149] Guo J K,Chi J. Effect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multifloru and Glycine max in Cd-contaminated soil[J]. Plant and Soil,2014,375(1):205-214 [150] Kamran M A,Syed J H. Effect of plant growth-promoting rhizobacteria inoculation on cadmium (Cd) uptake by Eruca sativa[J]. Environmental Science and Pollution Research,2015,22(12):9275-9283 [151] Islam F,Yasmeen T,Riaz M,et al. Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants[J]. Ecotoxicology & Environmental Safety,2014,110:143-152 [152] Glick B R. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase[J]. FEMS Microbiology Letters,2005,251(1):11-21 [153] 杨榕,王敬敬,徐松,等. 溶磷真菌的筛选及耐盐特性分析[J].微生物学通报,2018,45(10):2142-2151 |
[1] | 赵树栋, 李建宏. 高原早熟禾根际促生菌分离筛选及特性研究[J]. 草地学报, 2021, 29(9): 1885-1891. |
[2] | 张新飞, 佘木子, 李晗玉, 敬松, 姜惠娜, 高浩, 朱延晓, 付娟娟. 琥珀酸黄杆菌促生机理及其对多年生黑麦草生长和抗逆性的生理调控作用[J]. 草地学报, 2021, 29(8): 1704-1711. |
[3] | 张万通, 李超群, 于露, 邵新庆. 植物根际促生菌菌肥在高寒草甸替代化肥效应研究[J]. 草地学报, 2021, 29(7): 1423-1429. |
[4] | 杨婉秋, 敬洁, 朱灵, 高永恒. 川西北高寒草甸植物根际促生菌筛选及其特性研究[J]. 草地学报, 2021, 29(6): 1174-1182. |
[5] | 符京燕, 梁林林, 周敏, 李州. 伽马氨基丁酸浸种对铝胁迫下白三叶种子萌发及耐铝性的影响[J]. 草地学报, 2020, 28(5): 1275-1284. |
[6] | 崔会婷, 孙熙喏, 马承泽, 胡倩楠, 孙彦. 代谢组学在牧草与草坪草抗逆性中的研究进展[J]. 草地学报, 2020, 28(4): 873-880. |
[7] | 郭雨晴, 赵世超, 徐道龙, 郭洋楠, 贺安民, 常建鸿, 包玉英. 3种荒漠珍稀植物根际促生菌的筛选、鉴定及对高粱幼苗生长的影响[J]. 草地学报, 2020, 28(4): 1121-1128. |
[8] | 李琦, 姚拓, 阿不满, 杨晓玫, 张建贵, 冯影. 根际促生菌微胶囊剂研发及对苜蓿、燕麦促生效果评价[J]. 草地学报, 2019, 27(5): 1392-1399. |
[9] | 王伟伟, 王勇锋, 张舒梦, 王竹林, 孙风丽, 张超, 奚亚军. 柳枝稷PvbZIP8基因的克隆与表达分析[J]. 草地学报, 2019, 27(3): 560-566. |
[10] | 张燕, 朱慧森, 白永超, 黄志超, 胡婧, 董宽虎, 李存福. 3个居群野生草地早熟禾耐盐性比较研究[J]. 草地学报, 2018, 26(5): 1215-1222. |
[11] | 穆志新, 师颖, 张丽君, 周建萍. 导入OsVTE基因提高普那菊苣的抗旱性[J]. 草地学报, 2017, 25(4): 839-844. |
[12] | 赵会会, 方志刚, 马睿, 娄来清, 蔡庆生. 耐镉根际促生菌的筛选及其对一年生黑麦草镉吸收积累的影响[J]. 草地学报, 2017, 25(3): 554-560. |
[13] | 马莉, 谢晓蓉, 刘金荣, 刘铁军, 刘译锴, 卢建男, 王丹妮. 甜菜碱与植物抗逆性研究进展及其在草坪上的应用[J]. 草地学报, 2016, 24(5): 947-952. |
[14] | 李芳, 高萍, 段廷玉. AM菌根真菌对非生物逆境的响应及其机制[J]. 草地学报, 2016, 24(3): 491-500. |
[15] | 樊波, 孙鑫博, 张胤冰, 张雪, 袁建波, 张海兰, 肖维阳, 韩烈保, 许立新. 结缕草ZjCCS基因的克隆与表达分析[J]. 草地学报, 2016, 24(2): 447-452. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||