[1] 吕晓敏,王玉辉,周广胜,等. 温度与降水协同作用对短花针茅生物量及其分配的影响[J]. 生态学报,2015,35(3):752-760 [2] 姜路帆,李亚衡,杨进荣,等. 降水变化对锡林郭勒草原土壤动物数量的影响[J]. 草地学报,2019,27(3):766-774 [3] 闫钟清,齐玉春,彭琴,等. 模拟降水和氮沉降增加对草地生物量影响的研究进展[J]. 草地学报,2017,25(6):1165-1170 [4] 周华坤,周立,赵新全,等. 金露梅灌丛地下生物量形成规律的研究[J]. 草业学报,2002,11(2):59-65 [5] West J B,Espeleta J F,Donovan L A. Fine root production and turnover across a complex edaphic gradient of a Pinuspalustris-Aristidastricta savanna ecosystem[J]. Forest Ecology and Management,2004,189:397-406 [6] Pilon R,Picon-Cochard C,Bloor J M G,et al. Grassland root demography responses to multiple climate change drivers depend on root morphology[J]. Plant and Soil,.2012,364:395-408 [7] 王杨,徐文婷,熊高明,等. 檵木生物量分配特征[J]. 植物生态学报,2017,41(1):105-114 [8] 程军回,张元明. 分胁迫下荒漠地区2种草本植物生物量分配策略[J]. 干旱区研究,2012,29(3):432-439 [9] Kang M Y,Dai C,Ji W Y,et al. Biomass and its allocation in relation to temperature,precipitation,and soil nutrients in Inner Mongolia grasslands,China[J]. PLoS ONE,2013,8(7):e69561 [10] Knapp A K,Briggs J M,Koelliker J K. Frequency and extent of water limitation to primary production in a mesic temperate grassland[J]. Ecosystems,2001,4:19-28 [11] Bai Y F,Wu J G,Xing Q,et al. Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau[J]. Ecology,2008,89:2140-2153 [12] 柴曦,梁存柱,梁茂伟,等. 内蒙古草甸草原与典型草原地下生物量与生产力季节动态及其碳库潜力[J]. 生态学报,2014,34(19):5530-5540 [13] Fereres E,Soriano M A. Deficit irrigation for reducing agricultural water use[J]. Journal of Experimental Botany,2007,58:147-159 [14] Chaves M M,Flexas J,Pinheiro C. Photosynthesis under drought and salt stress:regulation mechanisms from whole plant to cell[J]. Annals of Botany,2009,103:551-560 [15] Bloom A J,Chapin F S,Mooney H A. Resource limitation in plants-An economic analogy[J]. Annual Review of Ecology and Systematics,1985,16:363-392 [16] Chapin FS,Bloom AJ,Field CB,et al. Plant responses to multiple environmental factors[J]. BioScience,1987,37:49-57 [17] Zhou X H,Talley M,Luo Y Q. Biomass,litter,and soil respiration along a precipitation gradient in Southern Great Plains,USA[J]. Ecosystems,2009,12:1369-1380 [18] Han B,Fan J W,Ping Z H. Grassland biomass of communities along gradients of the Inner Mongolia Grassland transect[J]. Journal of Plant Ecology,2006,35:553-562 [19] Yang Y H,Fang J Y,Ma W H,et al. Large-scale pattern of biomass partitioning across China’s grasslands[J]. Global Ecology and Biogeography,2010,19:268-277 [20] 杨昊天,李新荣,刘立超,等. 荒漠草地4种灌木生物量分配特征[J]. 中国沙漠,2013,33(5):1340-1348 [21] Jennifer R,Stephane M,Tanguy J,et al. Growth and biomass allocation in seedlings of rain-forest trees in New Caledonia:monodominants vs. subordinates and episodic vs. continuous Regenerators[J]. Journal of Tropical Ecology,2017,33:128-142 [22] Su P X,Yan Q D,Xie T T,et al. Associated growth of C3and C4 desert plants helps the C3 species at the cost of the C4 species[J]. Acta Physiologiae Plantarum,2012,34:2057-2068 [23] 周海燕,谭会娟,张志山,等. 红砂和珍珠对极端环境的生理响应与调节机制[J]. 中国沙漠,2012,32(1):24-32 [24] 严巧娣,苏培玺,高松. 干旱程度对C3植物红砂和C4植物珍珠光合生理参数的影响[J]. 中国沙漠,2012,32(2):364-371 [25] Zhang H N,Su P X,Li S J,et al. Response of root traits of Reaumuria soongorica and Salsola passerina to facilitation[J]. Journal of Arid Land,2014,6:628-636 [26] 单立山,苏铭,张正中,等. 不同生境下荒漠植物红砂-珍珠猪毛菜混生根系的垂直分布规律[J]. 植物生态学报,2018,42(4):475-486 [27] 苏铭. 降水变化对混生红砂-珍珠植物功能性状及种间关系的影响[D]. 兰州:甘肃农业大学,2019:13-16 [28] 肖春旺. 施水量对毛乌素沙地4种优势植物叶绿素荧光的影响[J]. 草地学报,2001,9(4):296-301 [29] 付晓玥,闫建成,梁存柱,等. 干旱与半干旱区一年生植物水势对模拟降水变化的响应[J]. 内蒙古大学学报(自然科学版),2012,43(2):160-167 [30] 闫建成,梁存柱,付晓玥,等. 草原与荒漠一年生植物性状对降水变化的响应[J]. 草业学报,2013,22(1):68-76 [31] 寇祥明,杨利民,姜雷,等. 五叶地锦幼苗生长和生理生态特性对模拟降水量变化的响应[J]. 吉林农业大学学报,2006,28(5):521-524 [32] 李秋艳,赵文智. 5种荒漠植物幼苗对模拟降水量变化的响应[J]. 冰川冻土,2006(3):414-420 [33] Mcconnaughay K D M,Coleman JS. Biomass allocation in plants:ontogeny or optimality? a test along three resource gradients[J]. Ecology,1999,80:2581-2593 [34] 王政权,张彦东. 水曲柳落叶松根系之间的相互作用研究[J]. 植物生态学报,2000,24(3):346-350 [35] 严巧娣. C3植物红砂和C4植物珍珠混生光合生理特征及种间相互作用研究[D]. 北京:中国科学院大学,2010:64-72 [36] 张海娜. 荒漠植物红砂和珍珠种间联生的相互作用关系[D]. 北京:中国科学院大学,2014:75-87 [37] 毛伟,崔夺,李玉霖,等. 沙质草地不同生活史植物的生物量分配对氮素和水分添加的响应[J]. 植物生态学报,2014,38(2):125-133 [38] McCarthy M C,Enquist B J. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation[J]. Functional Ecology,2007,21:713-720 [39] Weiner J. Allocation,plasticity and allometry in plants[J]. Perspectives in plant ecology,evolution and systematics,2004,6:207-215 [40] 严月,朱建军,张彬,等. 草原生态系统植物地下生物量分配及对全球变化的响应[J]. 植物生态学报,2017,41(5):585-596 [41] Fang Y R,Zou X J,Lie Z Y,et al. Variation in organ biomass with changing climate and forest characteristics across chinese forests[J]. Forests,2018,9(9):521 [42] 单立山,李毅,段桂芳,等. 模拟降雨变化对两种荒漠植物幼苗生长及生物量分配的影响[J]. 干旱区地理,2016,39(6):1267-1274 [43] Chen Y F,Zhang L W,Shi X,et al. Life history responses of two ephemeral plant species to increased precipitation and nitrogen in the Gurbantunggut Desert[J]. Peer J,2019,7:e6158 [44] Wang R Z,Gao Q. Climate-driven changes in shoot density and shoot biomass in Leymus chinensis (Poaceae) on the North-east China Transect (NECT)[J]. Global Ecology & Biogeography,2003,12:249-259 [45] 崔婉莹,刘思佳,魏亚伟,等. 氮添加和水分胁迫对红松、水曲柳幼苗生物量分配的影响[J]. 应用生态学报,2019,30(5):1454-1462 [46] Xu H,Li Y. Water-use strategy of three central Asian desert shrubs and their responses to rain pulse events[J]. Plant and Soil,2006,285:5-17 |