[1] Bu C F,Wu S F,Xie Y S,et al. The Study of Biological Soil Crusts:Hotspots and Prospects[J]. Clean-Soil Air Water,2013,41(9):899-906 [2] Belnap J,Lange D H C O L. Biological Soil Crusts:Structure,Function,and Management[J]. Biological Conservation,2003,108:129-130 [3] Bowker M A,Mau R L,Maestre F T,et al. Functional profiles reveal unique ecological roles of various biological soil crust organisms[J]. Functional Ecology,2011,25(4):787-795 [4] Maestre F T,Bowker M A,Cantón Y,et al. Ecology and functional roles of biological soil crusts in semi-arid ecosystems of Spain[J]. Journal of Arid Environments,2011,75(12):1282-1291 [5] Pointing S B,Belnap J. Microbial colonization and controls in dryland systems[J]. Nature Reviews Microbiology,2012,10 (8),551-562 [6] Wilske B,Burgheimer J,Karnieli A,et al. The CO2 exchange of biological soil crusts in a semiarid grass-shrubland at the northern transition zone of the Negev desert,Israel[J]. Biogeosciences,2008,5:1411-1423 [7] Castillo-Monroy A P,Maestre F T,Rey A,et al. Biological soil crust microsites are the main contributor to soil respiration in a semiarid ecosystem[J]. Ecosystems,2011,14(5):835-847 [8] Sancho L G,Belnap J,Colesie C,et al. Carbon budgets of biological soil crusts at micro-,meso-,and global scales[J]. Biological Soil Crusts:An Organizing Principle in Drylands,2016,226:287-304 [9] Wohlfahrt G,Fenstermaker L F,Arnone J A. Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem[J]. Global Change Biology,2008,14(7):1475-1487 [10] 黄磊,张志山,潘颜霞,等. 荒漠人工植被区典型生物土壤结皮的固碳模型研究[J]. 中国沙漠,2013,33(6):1796-1802 [11] 戴黎聪,柯浔,曹莹芳,等. 关于生态功能与管理的生物土壤结皮研究[J]. 草地学报,2018,26(1):22-29 [12] Maestre F T,Cortina J. Small-scale spatial variation in soil CO2 efflux in a Mediterranean semiarid steppe[J]. Applied Soil Ecology,2003,23:199-209 [13] Yao X M,Xiao B,Kidron G J,et al. Respiration rate of moss-dominated biocrusts and their relationships with temperature and moisture in a semiarid ecosystem[J]. Catena,2019,183:104195 [14] Hanson P J,Edwards N T,Garten C T,et al. Separating root and soil microbial contributions to soil respiration:a review of methods and observations[J]. Biogeochemistry,2000,48(1):115-146 [15] 王博,段玉玺,王伟峰,等. 库布齐沙漠东部不同生物结皮发育阶段土壤温室气体通量[J]. 应用生态学报,2019,30(3):857-866 [16] 李炳垠,卜崇峰,李宜坪,等. 毛乌素沙地生物结皮覆盖土壤碳通量日动态特征及其影响因子[J]. 水土保持研究,2018,25(4):174-180 [17] 徐恒康,刘晓丽,史雅楠,等. 生物结皮对高寒退化草地植物群落的影响[J]. 草地学报,2018,26,(3):539-544 [18] Kumar K S,Dahms H U,Lee J S,et al. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence[J]. Ecotoxicology & Environmental Safety,2014,104:51-71 [19] Hussain S,Iqbal N,Brestic M,et al. Changes in morphology,chlorophyll fluorescence performance and Rubisco activity of soybean in response to foliar application of ionic titanium under normal light and shade environment[J]. Science of the Total Environment,2019,65:626-637 [20] Baker N R. Chlorophyll fluorescence:a probe of photosynthesis in vivo[J]. Annual Review of Plant Biology,2008,59:89-113 [21] Maxwell K,Johnsen G N. Chlorophyll fluorescence a practical guide[J]. Journal of Experimental Botany,2000,51:659-668 [22] Lan S B,Wu L,Zhang D L,et al. Effects of drought and salt stresses on man-made cyanobacterial crusts[J]. European Journal of Soil Biology,2010,46(6):381-386 [23] Munzi S,Varela Z,Paoli L. Is the length of the drying period critical for photosynthesis reactivation in lichen and moss components of biological soil crusts?[J]. Journal of Arid Environments,2019,166:86-90 [24] Lan S B,Ouyang H L,Wu L,et al. Biological soil crust community types differ in photosynthetic pigment composition,fluorescence and carbon fixation in Shapotou region of China[J]. Applied Soil Ecology,2017,111:9-16 [25] 马玉寿,施建军,董全民,等. 人工调控措施对“黑土型”退化草地垂穗披碱草栽培植被的影响[J]. 青海畜牧兽医杂志,2006(2):1-3 [26] 景增春,王启基,史惠兰,等. D型肉毒杀鼠素防治高原鼠兔灭效试验[J]. 草业科学,2006,23(3):89-91 [27] 孙华方,李希来,金立群,等. 生物土壤结皮对黄河源区人工草地植被与土壤理化性质的影响[J]. 草地学报,2020,28(2):509-520 [28] 秦福雯,康濒月,姜凤岩,等. 生物土壤结皮演替对高寒草原植被结构和土壤养分的影响[J]. 生态环境学报,2019,28(6):1100-1107 [29] Miralles I,Ladrón D G M,Chamizo S,et al. Soil CO2 exchange controlled by the interaction of biocrust successional stage and environmental variables in two semiarid ecosystems[J]. Soil Biology & Biochemistry,2018,124:11-23 [30] Zheng J L,Peng C R,Li H,et al. The role of non-rainfall water on physiological activation in desert biological soil crusts[J]. Journal of Hydrology,2018,556:790-799 [31] Zhao Y,Zhang Z,Hu Y,et al. The seasonal and successional variations of carbon release from biological soil crust-covered soil[J]. Journal of Arid Environments,2016,127:148-153 [32] Kheirfam H. Increasing soil potential for carbon sequestration using microbes from biological soil crusts[J]. Journal of Arid Environments,2020,172:104022 [33] 孙华方. 生物土壤结皮对黄河源人工草地稳定性的影响[D].西宁:青海大学,2019:26-28 [34] Thomas A D,Hoon S R,Linton P E. CO2 fluxes from cyanobacteria crusted soils in the Kalahari[J]. Applied Soil Ecology,2008,39,254-263 [35] Zhang C P,Niu D C,Song M L,et al. Effects of rainfall manipulations on carbon exchange of cyanobacteria and moss-dominated biological soil crusts[J]. Soil Biology and Biochemistry,2018,124:24-31 [36] Li X J,Zhao Y,Yang H T,et al. Soil Respiration of Biologically-Crusted Soils in Response to Simulated Precipitation Pulses in the Tengger Desert,Northern China[J]. Pedosphere,2018,28(1):105-115 [37] 程军回,张元明. 影响生物土壤结皮分布的环境因子[J]. 生态学杂志,2010,29(1):133-141 [38] 孙华方,李希来,金立群,等. 黄河源区人工草地植被群落和土壤养分变化[J]. 水土保持通报,2019,39(3):25-30,38 [39] Wu L,Zhang G K,Lan S B,et al. Longitudinal photosynthetic gradient in crust lichens’ thalli[J]. Microbial Ecology,2014,67(4):888-896 [40] Housman D C,Powers H H,Collins A D,et al. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert[J]. Journal of Arid Environments,2006,66:620-634 [41] Wu L,Zhang G K,Lan S B,et al. Microstructures and photosynthetic diurnal changes in the different types of lichen soil crusts[J]. European Journal of Soil Biology,2013,59,48-53 [42] Gypser S,Herppich W B,Fischer T,et al. Photosynthetic characteristics and their spatial variance on biological soil crusts covering initial soils of post-mining sites in Lower Lusatia,NE Germany[J]. Flora-Morphology,Distribution,Functional Ecology of Plants,2016,220:103-116 [43] Pushkareva E,Elster J. Biodiversity and ecological classification of cryptogamic soil crusts in the vicinity of Petunia Bay,Svalbard[J]. Czech Polar Reports,2013,3(1):7-18 [44] Lan S B,Wu L,Zhang D L,et al. Assessing level of development and successional stages in biological soil crusts with biological indicators[J]. Microbial Ecology,2013,66(2):394-403 [45] Lan S B,Hu C X,Rao B Q,et al. Non-rainfall water sources in the topsoil and their changes during formation of man-made algal crusts at the eastern edge of Qubqi Desert,Inner Mongolia[J]. Science China Life Sciences,2010,53:1135-1141 [46] Hui R,Li X R,Zhao R M,et al. UV-B radiation suppresses chlorophyll fluorescence,photosynthetic pigment and antioxidant systems of two key species in soil crusts from the Tengger Desert,China[J]. Journal of Arid Environments,2015,113:6-15 [47] Karsten U,Holzinger A. Green algae in alpine biological soil crust communities:acclimation strategies against ultraviolet radiation and dehydration[J]. Biodiversity & Conservation,2014,23(7):1845-1858 [48] Canini F,Geml J,D'Acqui L P,et al. Exchangeable cations and pH drive diversity and functionality of fungal communities in biological soil crusts from coastal sites of Victoria Land,Antarctica[J]. Fungal Ecology,2020,45:100923 [49] Hu P L,Zhang W,Xiao L M,et al. Moss-dominated biological soil crusts modulate soil nitrogen following vegetation restoration in a subtropical karst region[J]. Geoderma,2019,352:70-79 |