[1] 李保珠,赵孝亮,彭雷. 植物叶绿体发育及调控研究进展[J]. 植物学报,2014,49(3):337-345 [2] 邢少辰,LIU C J. 叶绿体基因组研究进展[J]. 生物化学与生物物理进展,2008,35(1):21-28 [3] DONG W P,XU C,CHENG T,et al. Sequencing angiosperm plastid genomes made easy:a complete set of universal primers and a case study on the phylogeny of saxifragales[J]. Genome biology and evolution,2013,5(5):989-997 [4] IRISARRI I,STRASSERT J F H,BURKI F. Phylogenomic Insights into the Origin of Primary Plastids[J]. Systematic biology,2021,71(1):105-120 [5] HUANG X,TAN W,LI F,et al. The Chloroplast Genome of Prunus zhengheensis:Genome Comparative and Phylogenetic Relationships Analysis[J]. Gene,2021(793):145751 [6] CIVÁŇP,FOSTER P G,EMBLEY M T,et al. Analyses of Charophyte Chloroplast Genomes Help Characterize the Ancestral Chloroplast Genome of Land Plants[J]. Genome Biology and Evolution,2014,6(4):897-911 [7] ZHANG T W,FANG Y J,WANG X M,et al. The Complete Chloroplast and Mitochondrial Genome Sequences of Boea hygrometrica:Insights into the Evolution of Plant Organellar Genomes[J]. Plos One,2012,7(1):e30531 [8] GUO W,GREWE F,COBO-CLARK A,et al. Predominant and substoichiometric isomers of the plastid genome coexist within Juniperus plants and have shifted multiple times during cupressophyte evolution[J]. Genome Biology and Wvolution,2014,6(3):580-590 [9] GUISINGER M M,KUEHL J V,BOOER J L,et al. Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae:rearrangements,repeats,and codon usage[J]. Molecular Biology and Evolution,2011,28(1):583-600 [10] PALMER J D,OSORIO B,ALDRICH J. Chloroplast DNA evolution among legumes:Loss of a large inverted repeat occurred prior to other sequence rearrangements[J]. Current Genetics,1987,11(4):275-286 [11] WICKE S,MULLER K F,DE PAMPHILIS C W,et al. Mechanisms of Functional and Physical Genome Reduction in Photosynthetic and Nonphotosynthetic Parasitic Plants of the Broomrape Family[J]. The Plant Cell,2013,25(10):3711-3725 [12] LEI W J,NI D P,WANG Y J,et al. Intraspecific and heteroplasmic variations,gene losses and inversions in the chloroplast genome of Astragalus membranaceus[J]. Scientific Reports,2016,6(1):21669 [13] CHUMLEY T W,PALMER J D,MOWER J P,et al. The complete chloroplast genome sequence of Pelargonium x hortorum:organization and evolution of the largest and most highly rearranged chloroplast genome of land plants[J]. Molecular biology and evolution,2006,23(11):2175-2190 [14] SMALL E. Alfalfa and Relatives:Evolution and Classification of Medicago[M]. Ottawa:NRC Research Press,2011:1-4 [15] 毕玉芬,车伟光,顾垒. 德钦地区野生紫花苜蓿群落多样性特征及其来源分析[J]. 草地学报,2007,15(4):306-311 [16] 中华人民共和国农业农村部. 中华人民共和国农业部公告第1407号[EB/OL]. http://www.moa.gov.cn/nybgb/2010/dqq/201806/t20180601_6150927.htm,2010-07-20/2021-07-15 [17] 张凤仙,毕玉芬,王晓云. 云南野生苜蓿与引进苜蓿的核型分析[J]. 云南农业大学学报,2008,23(4):431-435 [18] 马向丽,毕玉芬,车伟光,等. 云南野生和逸生苜蓿资源适生性分析[J]. 草地学报,2013,21(2):265-271 [19] 赵雁,车伟光,毕玉芬.‘德钦’紫花苜蓿苗期耐热性综合评价[J]. 北方园艺,2015(20):69-73 [20] 赵雁,车伟光,毕玉芬. 高温胁迫下‘德钦’紫花苜蓿APX活性和转录水平分析[J]. 分子植物育种,2015,13(7):1611-1615 [21] 赵雁,马向丽,车伟光,等. 高温胁迫下‘德钦’紫花苜蓿内源激素的变化[J]. 草地学报,2016,24(2):358-362 [22] 姜华,毕玉芬,陈连仙,等. 旱作条件下紫花苜蓿生理特性的研究[J]. 草地学报,2012,20(6):1077-1080 [23] 姜娜,唐敏,韩博,等. 铝胁迫对紫花苜蓿不同种质材料的影响及综合评价[J]. 草地学报,2019,27(3):620-627 [24] 孙文君,唐敏,任健,等. 8份云南苜蓿属优异种质资源对铝胁迫的生理耐受响应研究[J]. 草地学报,2018,26(5):1190-1197 [25] 许文花,杨蔚,段新慧,等. 铝胁迫对紫花苜蓿生长及根系发育的影响[J]. 草原与草坪,2020,40(6):71-75 [26] DOYLE J J,DOYLE J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J]. Phytochemical Bulletin,1987,19(1):11-15 [27] TILLICH M,LEHWARK P,PELLIZZER T,et al. GeSeq-versatile and accurate annotation of organelle genomes[J]. Nucleic Acids Research,2017,45(W1):6-11 [28] GREINER S,LEHWARK P,BOCK R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1:expanded toolkit for the graphical visualization of organellar genomes[J]. Nucleic acids research,2019,47(W1):59-64 [29] SHARPL P M,LI W H. The codon Adaptation Index—a measure of directional synonymous codon usage bias,and its potential applications[J]. Nucleic acids research,1987,15(3):1281-1295 [30] 李强,万建民. SSRHunter,一个本地化的SSR位点搜索软件的开发[J]. 遗传,2005,27(5):808-810 [31] BEIER S,THIEL T,MVNCH T,et al. MISA-web:a web server for microsatellite prediction[J]. Bioinformatics,2017,33(16):2583-2585 [32] KUMAR S,STECHER G,TAMURA K. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution,2016,33(7):1870-1874 [33] PALMER J D,THOMPSON W F. Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost[J]. Cell,1982,29(2):537-550 [34] LAVIN M,DOYLE J J. Evolutionary Significance of the Loss of the Chloroplast-DNA Inverted Repeat in the Leguminosae Subfamily Papilionoideae[J]. Evolution,1990,44(2):390-402 [35] QUAX T E F,CLAASSENS N J,SÖLL D,et al. Codon Bias as a Means to Fine-Tune Gene Expression[J]. Molecular Cell,2015,59(2):149-161 [36] PLOTKIN J B,KUDLA G. Synonymous but not the same:the causes and consequences of codon bias[J]. Nature Reviews Genetics,2011,12(23):32-42 [37] WANG L J,ROOSSINCK M J. Comparative analysis of expressed sequences reveals a conserved pattern of optimal codon usage in plants[J]. Plant Molecular Biology,2006,61(4-5):699-710 [38] 许超,何承刚,牟兰,等. 干热胁迫下紫花苜蓿Rubisco羧化酶和活化酶活性变化及其基因表达的研究[J]. 草地学报,2021,29(2):228-233 [39] 陈志祥,罗小燕,李拴林,等. 基于SSR标记的木豆种质资源遗传多样性与群体结构分析[J].草地学报,2021,29(5):904-911 [40] GOTTESMAN S. Proteases and their targets in Escherichia coli[J]. Annual review of genetics,1996,30:465-506 [41] 纪鸿飞,彭振英,马敬,等. 花生Clp蛋白酶基因(AhClpP)的克隆与序列分析[J]. 华北农学报,2010,25(S2):5-8 [42] 王振海,孙野青. Clp蛋白酶研究进展[J]. 药物生物技术,2005,12(6):412-415 [43] QUEITSCH C,HONG S W,VIERLING E,et al. Heat Shock Protein 101 Plays a Crucial Role in Thermotolerance in Arabidopsis[J]. The Plant Cell,2000,12(4):479-492 [44] YANG J Y,SUN Y,SUN A Q,et al. The involvement of chloroplast HSP100/ClpB in the acquired thermotolerance in tomato[J]. Plant Molecular Biology,2006,62(3):385-395 [45] 郑春花,孔祥远,陈冠旭,等. 花生Clp家族成员的筛选、聚类和盐胁迫响应分析[J]. 山东农业科学,2016,48(12):1-5(责任编辑 闵芝智)第30卷 第2期 Vol.30 No. 2草 地 学 报 ACTAAGRESTIASINICA 2022年 2月 |