[1] Byrnes R C,Eastburn D J,Tate K W,et al. A global meta-analysis of grazing impacts on soil health indicators[J]. Journal of Environmental Quality,2018,47(4):758-765 [2] Canals R M,San emeterio L,Duran M,et al. Plant-herbivory feedbacks and selective allocation of a toxic metal are behind the stability of degraded covers dominated by Brachypodium pinnatum in acidic soils[J]. Plant and Soil,2017,415(1-2):373-386 [3] Dai L,Guo X,Ke X,et al. Moderate grazing promotes the root biomass in Kobresia meadow on the northern Qinghai-Tibet Plateau[J]. Ecology and Evolution,2019,9(16):395-406 [4] Guo Y,Liu L P,Zheng L L,et al. Long-term grazing affects relationships between nitrogen form uptake and biomass of alpine meadow plants[J]. Plant Ecology,2017,218(9):1035-1045 [5] Deng L,Zhang Z N,Shangguan Z P. Long-term fencing effects on plant diversity and soil properties in China[J]. Soil & Tillage Research,2014(137):7-15 [6] Veen G F,De vries S,Bakker E S,et al. Grazing-induced changes in plant-soil feedback alter plant biomass allocation[J]. Oikos,2014,123(7):800-806 [7] 陈林. 荒漠草原猪毛蒿的生态适应对策[D]. 银川:宁夏大学,2009:5-7 [8] Mokany K,Raison R J,Prokushkin A S. Critical analysis of root:shoot ratios in terrestrial biomes[J]. Global Change Biology,2006,12(1):84-96 [9] Dovrat G,Meron E,Shachak M,et al. Plant size is related to biomass partitioning and stress resistance in water-limited annual plant communities[J]. Journal of Arid Environments,2019(165):1-9 [10] Patty L,Halloy S R P,Hiltbrunner E,et al. Biomass allocation in herbaceous plants under grazing impact in the high semi-arid Andes[J]. Flora,2010,205(10):695-703 [11] Hu F L,Liu B,Liu Z M,et al. Effects of grazing on plant species diversity and carbon partitioning in semiarid rangelands of northeastern China[J]. Phyton-International Journal of Experimental Botany,2015,84(1):209-221 [12] Niu B,Zeng C,Zhang X,et al. High below-ground productivity allocation of alpine grasslands on the northern Tibet[J]. Plants-Basel,2019,8(12):535 [13] Li L,Weiner J,Wang Y,et al. Yield-density relationships of above-and belowground organs in Allium cepa var. aggregatum populations[J]. Plant Ecology,2016,217(7):913-922 [14] Ma H M,Zheng C C,Gao Y Z,et al. Moderate clipping stimulates over-compensatory growth of Leymus chinensis under saline-alkali stress through high allocation of biomass and nitrogen to shoots[J]. Plant Growth Regulation,2020,92:95-106 [15] 平晓燕,周广胜,孙敬松. 植物光合产物分配及其影响因子研究进展[J]. 植物生态学报,2010,34(1):104-115 [16] 陈佐忠,汪诗平. 中国典型草原生态系统[M]. 北京:科学出版社,2000:1-5 [17] 安钰,安慧. 宁夏荒漠草原优势植物生长及生物量分配对放牧干扰的响应[J]. 西北植物学报,2015,35(2):373-378 [18] 荀其蕾,安沙舟,孙宗玖,等. 不同放牧压力下伊犁绢蒿构件生物量分配的变化[J]. 草地学报,2015,23(2):258-263 [19] Zeng C,Wu J,Zhang X. Effects of grazing on above-vs. below-ground biomass allocation of Alpine grasslands on the northern Tibetan Plateau[J]. Plos One,2015,10(8):e0135173 [20] 许宏斌,辛晓平,宝音陶格涛,等. 放牧对呼伦贝尔羊草草甸草原生物量分布的影响[J]. 草地学报,2020,28(3):768-774 [21] Gong X Y,Fanselow N,Dittert K,et al. Response of primary production and biomass allocation to nitrogen and water supplementation along a grazing intensity gradient in semiarid grassland[J]. European Journal of Agronomy,2015(63):27-35 [22] Liu W. Individual reproductive strategy of Stipa breviflora under different grazing pressures[J]. Grassland Science,2020,66:174-182 [23] 张洪生,邵新庆,刘贵河,等. 围封、浅耕翻改良技术对退化羊草草地植被恢复的影响[J]. 草地学报,2010,18(3):339-344 [24] Li W,Huang H Z,Zhang Z N,et al. Effects of grazing on the soil properties and C and N storage in relation to biomass allocation in an alpine meadow[J]. Journal of Soil Science and Plant Nutrition,2011,11(4):27-39 [25] 张璐. 不同利用方式对内蒙古典型草原优势种功能性状及功能多样性的影响[D]. 呼和浩特:内蒙古农业大学,2018:11-18 [26] 邢小青,张璐,宝音陶格涛,等. 放牧对糙隐子草地上个体功能性状的影响[J]. 中国草地学报,2019,41(6):116-122 [27] Wilson C H,Strickland M S,Hutchings J A,et al. Grazing enhances belowground carbon allocation,microbial biomass,and soil carbon in a subtropical grassland[J]. Global Change Biology,2018,24(7):2997-3009 [28] Pucheta E,Bonamici I,Cabido M,et al. Below-ground biomass and productivity of a grazed site and a neighbouring ungrazed exclosure in a grassland in central Argentina[J]. Austral Ecology,2004(29):201-208 [29] Gao Y Z,Giese M,Lin S,et al. Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity[J]. Plant and Soil,2008,307(1-2):41-50 [30] 位晓婷,刘月华,钟梦莹,等. 羊草个体性状对不同放牧模式响应的研究[J]. 草地学报,2014,22(5):949-953 [31] Hui D,Jackson R B. Geographical and interannual variability in biomass partitioning in grassland ecosystems:a synthesis of field data[J]. New Phytologist,2006,169(1):85-93 [32] Wang L,Niu K,Yang Y,et al. Patterns of above- and belowground biomass allocation in China's grasslands:Evidence from individual-level observations[J]. Science China-Life Sciences,2010,53(7):851-857 [33] 祁永. 放牧对草原群落特征及种群繁殖特性的影响[D]. 北京:中国农业大学,2005:45-51 [34] 汪诗平,李永宏,王艳芬,等. 不同放牧率对内蒙古冷蒿草原植物多样性的影响[J]. 植物学报,2001,43(1):89-96 |