草地学报 ›› 2021, Vol. 29 ›› Issue (1): 141-148.DOI: 10.11733/j.issn.1007-0435.2021.01.017
侯东杰1, 郭柯2
收稿日期:
2020-06-16
修回日期:
2020-09-19
发布日期:
2021-01-08
通讯作者:
郭柯
作者简介:
侯东杰(1991-),男,汉族,内蒙古呼和浩特市人,博士,主要从事植被生态学研究,E-mail:houdongjie01@126.com
基金资助:
HOU Dong-jie1, GUO Ke2
Received:
2020-06-16
Revised:
2020-09-19
Published:
2021-01-08
摘要: 为阐明典型草原生长季放牧过程中植物养分的动态变化,本研究在2017年生长季的不同放牧阶段(放牧早期、放牧中期和休牧后)对不同放牧强度影响下内蒙古典型草原主要物种克氏针茅(Stipa krylovii)、羊草(Leymus chinensis)和糙隐子草(Cleistogenes squarrosa)的碳(Carbon,C)、氮(Nitrogen,N)、磷(Phosphorus,P)浓度及N和P阶段转移率进行了测定。研究结果显示:放牧早期阶段,放牧强度对克氏针茅、羊草和糙隐子草的C,N,P浓度、C/N和C/P无显著影响;放牧中期和休牧后,随放牧强度的增加,3种植物的C浓度、C/N和C/P显著降低,N和P浓度显著提高。休牧后3种植物的N和P阶段转移率随生长季放牧强度的增加显著降低;与克氏针茅和羊草相比,糙隐子草在重度放牧具有最高的N和P阶段转移率。本研究表明典型草原植物养分特征及策略对短期放牧具有快速调整与适应能力。
中图分类号:
侯东杰, 郭柯. 典型草原植物养分对生长季不同放牧强度的动态响应[J]. 草地学报, 2021, 29(1): 141-148.
HOU Dong-jie, GUO Ke. Dynamic Response of Plant Nutrients to Grazing Intensity in the Growing Season in Typical Steppe[J]. Acta Agrestia Sinica, 2021, 29(1): 141-148.
[1] 沈海花,朱言坤,赵霞,等. 中国草地资源的现状分析[J]. 科学通报,2016,61(2):139-154 [2] Kang L,Han X G,Zhang Z B,et al. Grassland ecosystems in China:review of current knowledge and research advancement[J]. Philosophical Transactions of the Royal Society B-Biological Sciences,2007,362(1482):997-1008 [3] Steffens M,Köelbl A,Totsche K,et al. Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (PR China)[J]. Geoderma,2008,143(1-2):63-72 [4] He N P,Zhang Y H,Yu Q,et al. Grazing intensity impacts soil carbon and nitrogen storage of continental steppe[J]. Ecosphere,2011,2(1):1-10 [5] 杨浩,白永飞,李永宏,等. 内蒙古典型草原物种组成和群落结构对长期放牧的响应[J]. 植物生态学报,2009,33(3):499-507 [6] Ren H Y,Eviner V T,Gui W Y,et al. Livestock grazing regulates ecosystem multifunctionality in semi-arid grassland[J]. Functional Ecology,2018,32(12):2790-2800 [7] Schönbach P,Wan H W,Gierus M,et al. Grassland responses to grazing:effects of grazing intensity and management system in an Inner Mongolian steppe ecosystem[J]. Plant and Soil,2011,340(1-2):103-115 [8] Wan H W,Bai Y F,Schoenbach P,et al. Effects of grazing management system on plant community structure and functioning in a semiarid steppe:scaling from species to community[J]. Plant and Soil,2011,340(1-2):215-226 [9] Ritchie M E,Tilman D,Knops J M H. Herbivore effects on plant and nitrogen dynamics in oak savanna[J]. Ecology,1998,79(1):165-177 [10] Chuan X Z,Carlyle C N,Bork E W,et al. Long-term grazing accelerated litter decomposition in northern temperate grasslands[J]. Ecosystems,2018,21(7):1321-1334 [11] Liu C,Wang L,Song X X,et al. Towards a mechanistic understanding of the effect that different species of large grazers have on grassland soil N availability[J]. Journal of Ecology,2018,106(1):357-366 [12] Li X L,Liu Z Y,Ren W B,et al. Linking nutrient strategies with plant size along a grazing gradient:Evidence from Leymus chinensis in a natural pasture[J]. Journal of Integrative Agriculture,2016,15(5):1132-1144 [13] Güsewell S. N:P ratios in terrestrial plants:variation and functional significance[J]. New Phytologist,2004,164(2):243-266 [14] Elser J J,Sterner R W,Gorokhova E,et al. Biological stoichiometry from genes to ecosystems[J]. Ecology Letters,2000,3(6):540-550 [15] Bai Y F,Wu J G,Clark C M,et al. Grazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation gradient[J]. Journal of Applied Ecology,2012,49(6):1204-1215 [16] 孙世贤,崔志明,陈立波,等. 放牧强度季节调控对荒漠草原主要植物种群和土壤碳、氮的影响[J]. 中国草地学报,2014,36(2):49-54 [17] Zheng S X,Ren H Y,Li W H,et al. Scale-dependent effects of grazing on plant C:N:P stoichiometry and linkages to ecosystem functioning in the Inner Mongolia grassland[J]. PLoS One,2012,7(12):e51750 [18] Hou D J,Guo K,Liu C C.Asymmetric effects of grazing intensity on macroelements and microelements in grassland soil and plants in Inner Mongolia Grazing alters nutrient dynamics of grasslands[J]. Ecology and Evolution,2020,10:8916-8926 [19] Ma W J,Li J,Jimoh S O,et al. Stoichiometric ratios support plant adaption to grazing moderated by soil nutrients and root enzymes[J].PeerJ,2019,7:e7047 [20] Liang M W,Gornish E S,Mariotte P,et al. Foliar nutrient content mediates grazing effects on species dominance and plant community biomass[J]. Rangeland Ecology & Management,2019,72(6):899-906 [21] Reeder J D,Schuman G E. Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands[J]. Environmental Pollution,2002,116(3):457-463 [22] 韩国栋,李博,卫智军,等. 短花针茅草原放牧系统植物补偿性生长的研究-Ⅰ.植物净生长量[J]. 草地学报,1999,7(1):1-7 [23] 张艳芬,杨晓霞,董全民,等. 牦牛和藏羊混合放牧对放牧家畜采食量和植物补偿性生长的影响[J]. 草地学报,2019,27(6):1607-1614 [24] Millett J,Millard P,Hester A J,et al. Do competition and herbivory alter the internal nitrogen dynamics of birch saplings?[J]. New Phytologist,2005,168(2):413-422 [25] Zhang T R,Li F Y H,Shi C J,et al. Enhancement of nutrient resorption efficiency increases plant production and helps maintain soil nutrients under summer grazing in a semi-arid steppe[J]. Agriculture,Ecosystems & Environment,2020,292:106840 [26] Lü X T,Freschet G T,Kazakou E,et al. Contrasting responses in leaf nutrient-use strategies of two dominant grass species along a 30-yr temperate steppe grazing exclusion chronosequence[J]. Plant and Soil,2014,387(1-2):69-79 [27] Millett J S,Edmondson S. The impact of 36 years of grazing management on soil nitrogen (N) supply rate and Salix repens N status and internal cycling in dune slacks[J]. Plant and Soil,2015,396(1-2):411-420 [28] Jiang G M,Han X G,Wu J G. Restoration and management of the Inner Mongolia grassland require a sustainable strategy[J]. Ambio,2006,35(5):269-270 [29] 中国科学院地理科学与资源研究所,中国农业科学院草原研究所. NY/T635-2002天然草地合理载畜量的计算[S]. 北京:中国农业出版社,2002:1-16 [30] 丁小慧,宫立,王东波,等. 放牧对呼伦贝尔草地植物和土壤生态化学计量学特征的影响[J]. 生态学报,2012,32(15):4722-4730 [31] 王炜,梁存柱,刘钟龄,等. 草原群落退化与恢复演替中的植物个体行为分析[J]. 植物生态学报,2000,24(3):268-274 [32] 贺金生,韩兴国. 生态化学计量学:探索从个体到生态系统的统一化理论[J]. 植物生态学报,2010,34(1):2-6 [33] 银晓瑞,梁存柱,王立新,等. 内蒙古典型草原不同恢复演替阶段植物养分化学计量学[J]. 植物生态学报,2010,34(1):39-47 [34] 朴河春,刘丛强,朱书法,等. 贵州石灰岩和砂岩地区C4和C3植物营养元素的化学计量对N/P比值波动的影响[J]. 第四纪研究.2005,25(5):552-560 [35] 刘钟龄,王炜,郝敦元,等. 内蒙古草原退化与恢复演替机理的探讨[J]. 干旱区资源与环境,2002,16(1):84-91 |
[1] | 张力天, 刘炜, 刘德梅, 董瑞珍, 王晓丽, 张敏, 仁增曲扎, 边巴普尺, 杨时海, 马玉寿. 青藏高原白草生殖生长期植株器官生物量分配特征[J]. 草地学报, 2021, 29(12): 2694-2702. |
[2] | 王玉琴, 宋梅玲, 王宏生, 尹亚丽, 马玉寿. 添加氮素对退化高寒草地植被及营养品质的影响[J]. 草地学报, 2021, 29(12): 2742-2751. |
[3] | 贺福全, 陈懂懂, 李奇, 霍莉莉, 赵亮, 李春丽, 陈昕. 三江源区高寒草地营养承载力时空格局[J]. 草地学报, 2021, 29(12): 2808-2816. |
[4] | 唐芳林, 杨智, 王卓然, 孙暖, 韩丰泽, 赵金龙. 生态文明视域下草原治理体系构建研究[J]. 草地学报, 2021, 29(11): 2381-2390. |
[5] | 张浔浔, 杨斌, 吴淑莹, 肖志强, 文浪, 段阳海, 孙建. 尼洋河流域植被特征时空变化及其对水热的响应[J]. 草地学报, 2021, 29(11): 2566-2576. |
[6] | 李彤, 张宇, 赵晋灵, 闫瑞瑞, 辛晓平, 王旭, 陈金强, 吴冬秀, 李凌浩, 赵曼. 放牧对草甸草原土壤水热状况和地上生物量的影响[J]. 草地学报, 2021, 29(11): 2577-2582. |
[7] | 赵梦凡, 周秉荣, 赵彤, 周华坤, 校瑞香, 颜亮东, 李璠. 青海省草地植被干旱评估及驱动力分析研究[J]. 草地学报, 2021, 29(S1): 93-103. |
[8] | 孙树娇, 周秉荣, 周华坤, 王秀英, 权晨, 李甫, 陈奇. 青藏高原典型高寒荒漠生长季蒸散及水分消耗特征研究[J]. 草地学报, 2021, 29(S1): 137-145. |
[9] | 徐浩然, 俞富洋, 贾聪慧, 张国东, 李贺. 两种灌丛化草原小叶锦鸡儿的叶片化学计量特征[J]. 草地学报, 2021, 29(10): 2191-2199. |
[10] | 夏建强, 张勃, 李佳欣, 孙淑范, 汪睿. 高寒草地凋落物覆盖对狼毒生长微环境及种苗定居的影响[J]. 草地学报, 2021, 29(9): 1909-1915. |
[11] | 黄家兴, 吴静, 李纯斌, 秦格霞, 钱娟冰, 李怀海. 基于Sentinel-2和Landsat 8数据的天祝县草地地上生物量遥感反演[J]. 草地学报, 2021, 29(9): 2023-2030. |
[12] | 郭文章, 井长青, 王公鑫, 侯志雄, 赵苇康. 天山北坡荒漠草原土壤呼吸和生态系统呼吸对降水的响应[J]. 草地学报, 2021, 29(9): 2031-2039. |
[13] | 杜建雄, 任尉香, 袁涓文, 黄慧琼, 刘杰, 肖玉. 汞胁迫对4个草坪草、牧草品种幼苗生长和生理的影响[J]. 草地学报, 2021, 29(8): 1712-1718. |
[14] | 高志香, 李希来, 张静, 金立群, 周伟. 不同施肥处理对高寒矿区渣山改良土酶活性和理化性质的影响[J]. 草地学报, 2021, 29(8): 1748-1756. |
[15] | 张韦钰, 王春勇, 杜红梅. 富氢水对草地早熟禾耐盐性的影响以及与抗氧化酶活性的关系[J]. 草地学报, 2021, 29(7): 1436-1445. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||