草地学报 ›› 2021, Vol. 29 ›› Issue (1): 141-148.DOI: 10.11733/j.issn.1007-0435.2021.01.017
侯东杰1, 郭柯2
收稿日期:2020-06-16
修回日期:2020-09-19
发布日期:2021-01-08
通讯作者:
郭柯
作者简介:侯东杰(1991-),男,汉族,内蒙古呼和浩特市人,博士,主要从事植被生态学研究,E-mail:houdongjie01@126.com
基金资助:HOU Dong-jie1, GUO Ke2
Received:2020-06-16
Revised:2020-09-19
Published:2021-01-08
摘要: 为阐明典型草原生长季放牧过程中植物养分的动态变化,本研究在2017年生长季的不同放牧阶段(放牧早期、放牧中期和休牧后)对不同放牧强度影响下内蒙古典型草原主要物种克氏针茅(Stipa krylovii)、羊草(Leymus chinensis)和糙隐子草(Cleistogenes squarrosa)的碳(Carbon,C)、氮(Nitrogen,N)、磷(Phosphorus,P)浓度及N和P阶段转移率进行了测定。研究结果显示:放牧早期阶段,放牧强度对克氏针茅、羊草和糙隐子草的C,N,P浓度、C/N和C/P无显著影响;放牧中期和休牧后,随放牧强度的增加,3种植物的C浓度、C/N和C/P显著降低,N和P浓度显著提高。休牧后3种植物的N和P阶段转移率随生长季放牧强度的增加显著降低;与克氏针茅和羊草相比,糙隐子草在重度放牧具有最高的N和P阶段转移率。本研究表明典型草原植物养分特征及策略对短期放牧具有快速调整与适应能力。
中图分类号:
侯东杰, 郭柯. 典型草原植物养分对生长季不同放牧强度的动态响应[J]. 草地学报, 2021, 29(1): 141-148.
HOU Dong-jie, GUO Ke. Dynamic Response of Plant Nutrients to Grazing Intensity in the Growing Season in Typical Steppe[J]. Acta Agrestia Sinica, 2021, 29(1): 141-148.
| [1] 沈海花,朱言坤,赵霞,等. 中国草地资源的现状分析[J]. 科学通报,2016,61(2):139-154 [2] Kang L,Han X G,Zhang Z B,et al. Grassland ecosystems in China:review of current knowledge and research advancement[J]. Philosophical Transactions of the Royal Society B-Biological Sciences,2007,362(1482):997-1008 [3] Steffens M,Köelbl A,Totsche K,et al. Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (PR China)[J]. Geoderma,2008,143(1-2):63-72 [4] He N P,Zhang Y H,Yu Q,et al. Grazing intensity impacts soil carbon and nitrogen storage of continental steppe[J]. Ecosphere,2011,2(1):1-10 [5] 杨浩,白永飞,李永宏,等. 内蒙古典型草原物种组成和群落结构对长期放牧的响应[J]. 植物生态学报,2009,33(3):499-507 [6] Ren H Y,Eviner V T,Gui W Y,et al. Livestock grazing regulates ecosystem multifunctionality in semi-arid grassland[J]. Functional Ecology,2018,32(12):2790-2800 [7] Schönbach P,Wan H W,Gierus M,et al. Grassland responses to grazing:effects of grazing intensity and management system in an Inner Mongolian steppe ecosystem[J]. Plant and Soil,2011,340(1-2):103-115 [8] Wan H W,Bai Y F,Schoenbach P,et al. Effects of grazing management system on plant community structure and functioning in a semiarid steppe:scaling from species to community[J]. Plant and Soil,2011,340(1-2):215-226 [9] Ritchie M E,Tilman D,Knops J M H. Herbivore effects on plant and nitrogen dynamics in oak savanna[J]. Ecology,1998,79(1):165-177 [10] Chuan X Z,Carlyle C N,Bork E W,et al. Long-term grazing accelerated litter decomposition in northern temperate grasslands[J]. Ecosystems,2018,21(7):1321-1334 [11] Liu C,Wang L,Song X X,et al. Towards a mechanistic understanding of the effect that different species of large grazers have on grassland soil N availability[J]. Journal of Ecology,2018,106(1):357-366 [12] Li X L,Liu Z Y,Ren W B,et al. Linking nutrient strategies with plant size along a grazing gradient:Evidence from Leymus chinensis in a natural pasture[J]. Journal of Integrative Agriculture,2016,15(5):1132-1144 [13] Güsewell S. N:P ratios in terrestrial plants:variation and functional significance[J]. New Phytologist,2004,164(2):243-266 [14] Elser J J,Sterner R W,Gorokhova E,et al. Biological stoichiometry from genes to ecosystems[J]. Ecology Letters,2000,3(6):540-550 [15] Bai Y F,Wu J G,Clark C M,et al. Grazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation gradient[J]. Journal of Applied Ecology,2012,49(6):1204-1215 [16] 孙世贤,崔志明,陈立波,等. 放牧强度季节调控对荒漠草原主要植物种群和土壤碳、氮的影响[J]. 中国草地学报,2014,36(2):49-54 [17] Zheng S X,Ren H Y,Li W H,et al. Scale-dependent effects of grazing on plant C:N:P stoichiometry and linkages to ecosystem functioning in the Inner Mongolia grassland[J]. PLoS One,2012,7(12):e51750 [18] Hou D J,Guo K,Liu C C.Asymmetric effects of grazing intensity on macroelements and microelements in grassland soil and plants in Inner Mongolia Grazing alters nutrient dynamics of grasslands[J]. Ecology and Evolution,2020,10:8916-8926 [19] Ma W J,Li J,Jimoh S O,et al. Stoichiometric ratios support plant adaption to grazing moderated by soil nutrients and root enzymes[J].PeerJ,2019,7:e7047 [20] Liang M W,Gornish E S,Mariotte P,et al. Foliar nutrient content mediates grazing effects on species dominance and plant community biomass[J]. Rangeland Ecology & Management,2019,72(6):899-906 [21] Reeder J D,Schuman G E. Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands[J]. Environmental Pollution,2002,116(3):457-463 [22] 韩国栋,李博,卫智军,等. 短花针茅草原放牧系统植物补偿性生长的研究-Ⅰ.植物净生长量[J]. 草地学报,1999,7(1):1-7 [23] 张艳芬,杨晓霞,董全民,等. 牦牛和藏羊混合放牧对放牧家畜采食量和植物补偿性生长的影响[J]. 草地学报,2019,27(6):1607-1614 [24] Millett J,Millard P,Hester A J,et al. Do competition and herbivory alter the internal nitrogen dynamics of birch saplings?[J]. New Phytologist,2005,168(2):413-422 [25] Zhang T R,Li F Y H,Shi C J,et al. Enhancement of nutrient resorption efficiency increases plant production and helps maintain soil nutrients under summer grazing in a semi-arid steppe[J]. Agriculture,Ecosystems & Environment,2020,292:106840 [26] Lü X T,Freschet G T,Kazakou E,et al. Contrasting responses in leaf nutrient-use strategies of two dominant grass species along a 30-yr temperate steppe grazing exclusion chronosequence[J]. Plant and Soil,2014,387(1-2):69-79 [27] Millett J S,Edmondson S. The impact of 36 years of grazing management on soil nitrogen (N) supply rate and Salix repens N status and internal cycling in dune slacks[J]. Plant and Soil,2015,396(1-2):411-420 [28] Jiang G M,Han X G,Wu J G. Restoration and management of the Inner Mongolia grassland require a sustainable strategy[J]. Ambio,2006,35(5):269-270 [29] 中国科学院地理科学与资源研究所,中国农业科学院草原研究所. NY/T635-2002天然草地合理载畜量的计算[S]. 北京:中国农业出版社,2002:1-16 [30] 丁小慧,宫立,王东波,等. 放牧对呼伦贝尔草地植物和土壤生态化学计量学特征的影响[J]. 生态学报,2012,32(15):4722-4730 [31] 王炜,梁存柱,刘钟龄,等. 草原群落退化与恢复演替中的植物个体行为分析[J]. 植物生态学报,2000,24(3):268-274 [32] 贺金生,韩兴国. 生态化学计量学:探索从个体到生态系统的统一化理论[J]. 植物生态学报,2010,34(1):2-6 [33] 银晓瑞,梁存柱,王立新,等. 内蒙古典型草原不同恢复演替阶段植物养分化学计量学[J]. 植物生态学报,2010,34(1):39-47 [34] 朴河春,刘丛强,朱书法,等. 贵州石灰岩和砂岩地区C4和C3植物营养元素的化学计量对N/P比值波动的影响[J]. 第四纪研究.2005,25(5):552-560 [35] 刘钟龄,王炜,郝敦元,等. 内蒙古草原退化与恢复演替机理的探讨[J]. 干旱区资源与环境,2002,16(1):84-91 |
| [1] | 韩梦洁, 刘超, 梁鸿飞, 马海涛, 马红彬, 沈艳, 王国会. 不同海拔高度对温性山地草原土壤种子库特征的影响[J]. 草地学报, 2025, 33(9): 2755-2764. |
| [2] | 许玲玲, 刘佳奇, 龙嘉惠, 薛龙海, 李春杰. 我国西部天然草原植物真菌病害调查研究[J]. 草地学报, 2025, 33(9): 2765-2776. |
| [3] | 邓扬臻, 王锡湲, 李邵宇, 郑佳华, 张峰, 赵萌莉, 张彬. 荒漠草原弃耕演替过程中土壤多功能性及其与生物多样性关系[J]. 草地学报, 2025, 33(9): 2863-2872. |
| [4] | 吴沛桐, 温仲明, 郑诚, 袁浏欢, 谭凯, 王志鹏, 石长春, 马雅莉, 张艳. 毛乌素沙地不同恢复年限植物多样性与群落稳定性特征及其关系[J]. 草地学报, 2025, 33(9): 2880-2889. |
| [5] | 段俊光, 房凯, 褚建民, 王迎新, 张琦. 退化程度对典型草原物种多样性和土壤养分关系的影响[J]. 草地学报, 2025, 33(9): 2890-2899. |
| [6] | 李姣姣, 李广, 吴江琪, 徐国荣, 姚瑶, 王帅钧, 王雨媛. DNDC模拟氮形态对盐渍化草地CO2排放的影响及敏感性[J]. 草地学报, 2025, 33(9): 2912-2920. |
| [7] | 余雅楠, 葛楠, 王博, 李雨薇, 吕楠, 王传琪, 李欣. 内蒙古中西部荒漠草原区植物根系-土壤系统生态化学计量变化及环境响应[J]. 草地学报, 2025, 33(9): 2921-2930. |
| [8] | 康晓玉, 叶国辉, 孙珊珊, 王海龙, 张治良, 李亚楠, 布仁其其格, 王千成, 袁帅, 付和平. 典型草原过度放牧方式下布氏田鼠种群季节动态与植被特征的关系[J]. 草地学报, 2025, 33(9): 2931-2940. |
| [9] | 张胜男, 李富翠, 李金波, 李海涵, 闫雨欣, 丁孝伟, 郑丁元, 沙梦溪, 刘锡霖, 杨鲁闽, 韩烈保. 不同退化程度对坡地草地土壤可溶性有机碳及其特征的影响[J]. 草地学报, 2025, 33(9): 2941-2949. |
| [10] | 郭芳, 张卫青, 关海波, 万志强, 袁亚楠, TSEDEVDORJ Ser-od, 张丽. 不同放牧强度下内蒙古典型草原地表节肢动物群落特征[J]. 草地学报, 2025, 33(9): 2950-2961. |
| [11] | 鞠馨, 王新雅, 王冰莹, 韩国栋, 武倩. 放牧强度对荒漠草原植物群落组成和营养品质的影响[J]. 草地学报, 2025, 33(9): 2962-2972. |
| [12] | 靳连武, 赵金, 邵倩影, 纪宝明, 李雪锋, 李凯辉, 隋晓青, 公延明. 气候变化情景下新疆草地类常见植物潜在分布格局模拟[J]. 草地学报, 2025, 33(9): 2973-2991. |
| [13] | 秦乃花, 张金芝, 张园利, 王先知, 赵迎子, 罗军伟, 吕常笑, 高兴云, 路平, 王晶, 安国强, 魏颖, 赵庆杰. 山东省草地资源空间分布特征研究[J]. 草地学报, 2025, 33(9): 3034-3043. |
| [14] | 赵海东, 梁海红, 胡小文, 冯彦皓, 常生华, 李春杰, 侯扶江. 基于草地植被恢复指数的退化高寒草甸生态修复措施初步效果评价[J]. 草地学报, 2025, 33(9): 3057-3067. |
| [15] | 张姝玭, 乌日罕, 颜安, 高英志. 草原防火技术研究进展[J]. 草地学报, 2025, 33(8): 2413-2422. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||