[1] LIU Z,CHEN T,MA L,et al. Global transcriptome sequencing using the Illumina platform and the development of EST-SSR markers in autotetraploid alfalfa[J]. Plos One,2013,8(12):e83549 [2] GONZÁLEZ-GARCÍA S,MOREIRA M T,FEIJOO G. Environmental performance of lignocellulosic bioethanol production from Alfalfa stems. Biofuels[J]. Bioproducts and Biorefining,2010,4(2):118-131 [3] DIEN B S,MILLER D J,HECTOR R E,et al. Enhancing alfalfa conversion efficiencies for sugar recovery and ethanol production by altering lignin composition[J]. Bioresource Technology,2011,102(11):6479-6486 [4] ZHOU S,YANG Q,RUNGE T M. Ambient-temperature sulfuric acid pretreatment to alter structure and improve enzymatic digestibility of alfalfa stems[J]. Industrial Crops and Products,2015(70):410-416 [5] ZHOU S,RUNGE T M. Mechanism of improved cellulosic bio-ethanol production from alfalfa stems via ambient-temperature acid pretreatment[J]. Bioresource Technology,2015,100(193):288-296 [6] SAKIROǦLU M,İLHAN D. Medicago sativa species complex:Revisiting the century-old problem in the light of molecular tools[J]. Crop Science,2021,61(2):827-838 [7] FLAJOULOT S,RONFORT J,BAUDOUIN P,et al. Genetic diversity among alfalfa (Medicago sativa) cultivars coming from a breeding program,using SSR markers[J]. Theoretical and Applied Genetics,2005,111(7):1420-1429 [8] FALAHATI-ANBARAN M,HABASHI A A,ESFAHANY M,et al. Population genetic structure based on SSR markers in alfalfa (Medicago sativa L.) from various regions contiguous to the centres of origin of the species[J]. Journal of Genetics,2007,86(1):59-63 [9] ZHANG Z,XIE W,ZHANG J,et al. Phenotype-and SSR-based estimates of genetic variation between and within two important elymus species in western and northern China[J]. Genes,2018,9(3):147 [10] SEGOVIA-LERMA A,CANTRELL R,CONWAY J,et al. AFLP-based assessment of genetic diversity among nine alfalfa germplasms using bulk DNA templates[J]. Genome,2003,46(1):51-58 [11] MENGONI A,GORI A,BAZZICALUPO M. Use of RAPD and microsatellite (SSR) variation to assess genetic relationships among populations of tetraploid alfalfa Medicago sativa[J]. Plant Breeding,2000,119(4):311-317 [12] BADR A,EL-SHERIF N,ALY S,et al. Genetic diversity among selected Medicago sativa cultivars using inter-retrotransposon-amplified polymorphism,chloroplast DNA barcodes and morpho-agronomic trait analyses[J]. Plants,2020,9(8):995 [13] YANG Y,SHI F,XU B,et al. Identification and genetic diversity of alfalfa varieties[J]. Acta Agrestia Sinica,2020,28(4):1060-1067 [14] MA D,ZHANG X,HUANG T,et al. Genetic diversity analysis of 10 salt tolerant alfalfa[J]. Acta Agrestia Sinica,2019,27(6):1477-1485 [15] COLLARD B C Y,MACKILL D J. Start codon targeted (SCoT) polymorphism:a simple,novel DNA marker technique for generating gene-targeted markers in plants[J]. Plant Molecular Biology Reporter,2009,27(1):86-93 [16] ALIKHANI L,RAHMANI M S,SHABANIAN N,et al. Genetic variability and structure of Quercus brantii assessed by ISSR,IRAP and SCoT markers[J]. Gene,2014,552(1):176-183 [17] XIE W,ZHANG J,ZHAO X,et al. Siberian wild rye (Elymus sibiricusL.):Genetic diversity of germplasm determined using DNA fingerprinting and SCoT markers[J]. Biochemical Systematics and Ecology,2015(60):186-192 [18] ZHANG J,XIE W,WANG Y,et al. Potential of start codon targeted (SCoT) markers to estimate genetic diversity and relationships among Chinese Elymus sibiricus accessions[J]. Molecules,2015,20(4):5987-6001 [19] KAMIŃSKA M,TRETYN A,TREJGELL A. Genetic stability assessment of Taraxacum pieninicum plantlets after long-term slow growth storage using ISSR and SCoT markers[J]. Biologia,2019,75(4):599-604 [20] KHODAEE L,AZIZINEZHAD R,ETMINAN A R,et al. Assessment of genetic diversity among Iranian Aegilops triuncialis accessions using ISSR,SCoT,and CBDP markers[J]. Journal of Genetic Engineering and Biotechnology,2021,19(1):5 [21] IGWE D O,AFIUKWA C A,UBI B E,et al. Assessment of genetic diversity in Vigna unguiculata L.(Walp) accessions using inter-simple sequence repeat (ISSR) and start codon targeted (SCoT) polymorphic markers[J]. BMC Genetics,2017(18):98 [22] GORJI A M,POCZAI P,POLGAR Z,et al. Efficiency of arbitrarily amplified dominant markers (SCOT,ISSR and RAPD) for diagnostic fingerprinting in tetraploid potato[J]. American Journal of Potato Research,2011,88(3):226-237 [23] VIVODÍK M,BALÁZ[DD (-*2] ˇOVÁ Z[DD (-*2] ˇ,GÁLOVÁ Z,et al. Genetic diversity analysis of maize (Zea mays L.) using SCoT markers[J]. The Journal of Microbiology,Biotechnology and Food Sciences,2017,6(5):1170-1173 [24] GAWEL N J,JARRET R L. A modified CTAB DNA extraction procedure for Musa and Ipomoea[J]. Plant Molecular Biology Reporter,1991,9(3):262-266 [25] WANG C,MA B L,YAN X,et al. Yields of alfalfa varieties with different fall-dormancy levels in a temperate environment[J]. Agronomy Journal,2009,101(5):1146-1152 [26] LIU Z,LI X,WANG Z,et al. Contrasting strategies of alfalfa stem elongation in response to fall dormancy in early growth stage:the tradeoff between internode length and internode number[J]. Plos One,2015,10(8):e0135934 [27] CHAI X,DONG R,LIU W,et al. Optimizing sample size to assess the genetic diversity in common Vetch (Vicia sativa L.) populations using start codon targeted (SCoT) markers[J]. Molecules,2017(22):567 [28] GHISLAIN M,ZHANG D,FAJARDO D,et al. Marker-assisted sampling of the cultivated Andean potato Solanum phureja collection using RAPD markers[J]. Genetic Resources and Crop Evolution,1999,46(6):547-555 [29] LIU W X,LI L H,LIU W H,et al. SSR Analysis on the Sampling Strategy of psathyrostachys huashanic keng population[J]. Journal of Triticeae Crops,2006(26):16-20 [30] PREVOST A,WILKINSON M J. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars[J]. Theoretical and Applied Genetics,1999(98):107-112 [31] LEWONTIN R C. The apportionment of human diversity[J]. Evolutionary Biology,1972(6):381-398 [32] PEAKALL R O D,SMOUSE P E. GENALEX 6:genetic analysis in Excel. Population genetic software for teaching and research[J]. Molecular Ecology Notes,2006,6(1):288-295 [33] ROHLF F J. NTSYS-pc:Numerical Taxonomy and Multivariate Analysis System Vesion 2.11[M]. New York:Exeter Software,2000:1 [34] PRITCHARD J K,STEPHENS M,DONNELLY P. Inference of population structure using multilocus genotype data[J]. Genetics,2000(155):945-959 [35] EVANNO G,REGNAUT S,GOUDET J. Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study[J]. Molecular Ecology,2005,14(8):2611-2620 [36] EARL D A,VONHOLDT B M. STRUCTURE HARVESTER:a website and program for visualizing STRUCTURE output and implementing the Evanno method[J]. Conservation Genetics Resources,2012,4(2):359-36 [37] VIVODÍK M,GÁLOVÁ Z,BALÁŽOVÁŽ,et al. Start codon targeted (scot) polymorphism reveals genetic diversity in european old maize (Zea mays L.) Genotypes[J]. Potravinarstvo Slovak Journal of Food Sciences,2016,10(1):563-569 [38] CHITTORA M. Assessment of genetic fidelity of long term micropropagated shoot cultures of Achras sapota L. var.'Cricket Ball'as assessed by RAPD and ISSR markers[J]. Indian Journal of Biotechnology,2018,17(3):492-495 [39] MANDOULAKANI B A,SADIGH P,AZIZI H,et al. Comparative assessment of IRAP,REMAP,ISSR,and SSR_markers for evaluation of genetic diversity of Alfalfa (Medicago sativa L.)[J]. Agricultural Science and Technology,2015(17):999-1010 [40] NAGL N,TASKIi-AJDUKOVIC K,BARAC G,et al. Estimation of the genetic diversity in tetraploid alfalfa populations based on RAPD markers for breeding purposes[J]. International Journal of Molecular Sciences,2011,12(8):5449-5460 [41] TALEBI M,HAJIAHMADI Z,RAHIMMALEK M. Genetic diversity and population structure of four Iranian alfalfa populations revealed by sequence-related amplified polymorphism (SRAP) markers[J]. Journal of Crop Science and Biotechnology,2011,14(3):173-178 [42] JIANG L F,QI X,ZHANG X Q,et al. Analysis of diversity and relationships among orchardgrass (Dactylis glomerata L.) accessions using start codon-targeted markers[J]. Genetics and Molecular Research,2014,13(2):4406-4418 [43] XIONG F,ZHONG R,HAN Z,et al. Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes[J]. Molecular Biology Reports,2011,38(5):3487-3494 [44] ZHU W,ZHOU T,ZHONG M,et al. Sampling strategy for wild soybean (Glycine soja) populations based on their genetic diversity and fine-scale spatial genetic structure[J]. Frontiers of Biology in China,2007(2):397-402 [45] PRUETT C L,WINKER K. The effects of sample size on population genetic diversity estimates in song sparrows Melospiza melodia[J]. Journal of Avian Biology,2008,39(2):252-256 [46] MCCOY T J,BINGHAM E T. Cytology and cytogenetics of alfalfa[J]. Alfalfa and Alfalfa Improvement,1988(29):737-776 [47] YU L,KOLE C. The alfalfa genome[M]. Switzerland:Springer,2021:29-42 [48] SHEN C,DU H,CHEN Z,et al. The Chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research[J]. Molecular Plant,2020,13(9):1250-1261 |