[1] 邹晓燕, 王林杰, 黄杰. 柱花草SgNramp1和SgNramp2基因克隆与表达分析[J]. 草地学报, 2022, 30(6):1388-1395 [2] 王俐媛, 王坚, 丁西朋. 3种圭亚那柱花草根系分泌物对杂草幼苗生长的影响[J]. 草地学报, 2022, 30(6):1500-1508 [3] 严琳玲, 白昌军, 刘国道. 抗炭疽病柱花草空间育种新品系的多目标决策评价筛选[J]. 草地学报, 2009, 17(1):93-100, 105 [4] 易克贤. 柱花草炭疽病及其抗病育种进展[J]. 中国草地, 2001, 23(4):59-65 [5] WANG H, CHEN Z, LIU G, et al. Alterations of growth, antioxidant system and gene expression in Stylosanthes guianensis during Colletotrichum gloeosporioides infection[J]. Plant Physiol Biochem, 2017(118):256-266 [6] 付海天. 抗病与感病柱花草叶片结构及蛋白质比较研究[D]. 广州:华南热带农业大学, 2007:2-3 [7] 郑金龙, 李秋洁, 易克贤, 等. 9种杀菌剂对柱花草胶孢炭疽病菌的室内毒力测定[J]. 热带农业科学, 2015, 35(2):66-69 [8] ELMORE J M, GRIFFIN B D, WALLEY J W. Advances in functional proteomics to study plant-pathogen interactions[J]. Current Opinion in Plant Biology, 2021(63):102061 [9] ZULAWSKI M, BRAGINETS R, SCHULZE W X. PhosPhAt goes kinases-searchable protein kinase target information in the plant phosphorylation site database PhosPhAt[J]. Nucleic Acids Research, 2013, 41(Database issue):1176-1184 [10] ZHOU Q F, MENG Q, TAN X M, et al. Protein phosphorylation changes during systemic acquired resistance in Arabidopsis thaliana[J]. Frontiers in Plant Science, 2021(12):748287 [11] 陈阳, 高岩松, 李洪影, 等. 草地早熟禾蛋白激酶OSK4基因的克隆及对非生物胁迫响应分析[J]. 草地学报, 2022, 30(2):339-347 [12] NOUJAIM J, PAYNE L S, JUDSON I, et al. Phosphoproteomics in translational research:a sarcoma perspective[J]. Annals of Oncology, 2016, 27(5):787-794 [13] YU J J, GONZALEZ J M, DONG Z P, et al. Integrative proteomic and phosphoproteomic analyses of pattern- and effector-triggered immunity in tomato[J]. Frontiers in Plant Science, 2021(12):768693 [14] LI Y, YE Z, NIE Y, et al. Comparative phosphoproteome analysis of Magnaporthe oryzae-responsive proteins in susceptible and resistant rice cultivars[J]. Journal of Proteomics, 2015, 115(2):66-80 [15] 白昌军, 姚庆群, 刘国道. 空间辐射育种技术选育柱花草抗炭疽病新品系[J]. 热带作物学报, 2009, 30(8):1168-1175 [16] GAO M, WAN M, YANG L, et al. Molecular and physiological characterization of Arabidopsis Colletotrichum gloeosporioides pathosystem[J]. Plant Pathology, 2021, 70(5):1168-1179 [17] XING T, LAROCHE A. Revealing plant defense signaling:getting more sophisticated with phosphoproteomics[J]. Plant Signaling and Behavior,2011, 6(10):1469-1474 [18] COUTO D, ZIPFEL C. Regulation of pattern recognition receptor signaling in plants[J]. Nature Reviews Immunology, 2016, 16(9):537-552 [19] 杨茂霞, 林国彪, 陈彩虹, 等. 胶孢炭疽菌侵染柱花草叶片的显微观察[J].草业学报, 2015, 24(5):175-181 [20] 张晓林, 张俊娥, 贺璞慧中, 等. 胶孢炭疽菌侵染杨树叶片的组织病理学研究[J].北京林业大学学报, 2018, 40(3):101-109 [21] SUN T J, NITTA Y, ZHANG Q, et al. Antagonistic interactions between two MAP kinase cascades in plant development and immune signaling[J]. EMBO Reports, 2018, 19(7):e45324. [22] ZHANG M M, SU J B, ZHANG Y, et al. Conveying endogenous and exogenous signals:MAPK cascades in plant growth and defense[J]. Current Opinion in Plant Biology, 2018, 45(10):1-10 [23] ASANO T, NGUYEN T H, YASUDA M, et al. Arabidopsis MAPKKK δ-1 is required for full immunity against bacterial and fungal infection[J]. Journal of Experimental Botany, 2020, 71(6):2085-2097 [24] SU J B, ZHANG M M, ZHANG L, et al. Regulation of stomatal immunity by interdependent functions of a pathogen-responsive MPK3/MPK6 Cascade and abscisic acid[J]. Plant Cell, 2017, 29(3):526-542 [25] FU M, BAI Q, ZHANG H, et al. Transcriptome analysis of the molecular patterns of pear plants infected by two Colletotrichum fructicola pathogenic strains causing contrasting sets of leaf symptoms[J]. Frontiers in Plant Science,2022(13):761133 [26] YANG Y X, AHAMMED G J, WU C J, et al. Crosstalk among jasmonate, salicylate and ethylene signaling pathways in plant disease and immune responses[J]. Current Protein and Peptide Science, 2015, 16(5):450-461 [27] YANG Y L, LI H G, LIU M Y, et al. PeTGA1 enhances disease resistance against Colletotrichum gloeosporioides through directly regulating PeSARD1 in poplar[J]. International Journal of Biological Macromolecules, 2022(214):672-684 [28] SUN X, LI A, MA G, et al. Transcriptome analysis provides insights into the bases of salicylic acid-induced resistance to anthracnose in sorghum[J]. Plant Molecular Biology,2022, 110(1-2):69-80 [29] LI N, HAN X, FENG D, et al. Signaling crosstalk between salicylic acid and ethylene/jasmonate in plant defense:do we understand what they are whispering?[J]. International Journal of Biological Science, 2019, 20(3):671 [30] ALVAREZ-DIAZ J C, LAUGÉ R, DELANNOY E, et al. Genome-wide transcriptomic analysis of the effects of infection with the hemibiotrophic fungus Colletotrichum lindemuthianum on common bean[J]. Plants-Basel, 2022, 11(15):1995 [31] JIANG C J, SHIMONO M, SUGANO S, et al. Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-Magnaporthe grisea interaction[J]. Molecular Plant-Microbe Interactions, 2010, 23(6):791-798 [32] ADIE B A, PÉREZ-PÉREZ J, PÉREZ-PÉREZ M M, et al. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis[J]. Plant Cell, 2007, 19(5):1665-1681 [33] KUMAR A S, LAKSHMANAN V, CAPLAN J L, et al. Rhizobacteria Bacillus subtilis restricts foliar pathogen entry through stomata[J]. Plant Journal, 2012, 72(4):694-706 [34] JETTER R, KUNST L, SAMUELS A L. Composition of plant cuticular waxes[M]. New Jersey:Blackwell Publishing Ltd, 2006:145-181 [35] KHANAL B P, KNOCHE M. Mechanical properties of cuticles and their primary determinants[J]. Journal of Experimental Botany, 2017, 68(19):5351-5367 [36] 张启辉, 李晓曼, 龙希洋, 等. 植物角质蜡质代谢及抗病机制研究[J]. 浙江农林大学学报, 2020, 37(6):1207-1215 |