[1] 高娟婷,孙飞达,霍霏,等. 无人机遥感技术在草地动植物调查监测中的应用与评价[J]. 草地学报,2021,29(1):1-9 [2] 潘影,张燕杰,武俊喜,等. 基于遥感和无人机数据的草地NDVI影响因子多尺度分析[J]. 草地学报,2019,27(6):1766-1773 [3] JAY S,MAUPAS F,BENDOULA R,et al. Retrieving LAI,chlorophyll and nitrogen contents in sugar beet crops from multi-angular optical remote sensing:Comparison of vegetation indices and PROSAIL inversion for field phenotyping[J]. Field Crops Research,2017,210:33-46 [4] MAO Z,DENG L,DUAN F,et al. Angle effects of vegetation indices and the influence on prediction of SPAD values in soybean and maize[J]. International Journal of Applied Earth Observation and Geoinformation,2020,93:102198 [5] 马建,刘文昊,靳瑰丽,等. 基于CNN和SVM的无人机多光谱遥感草地植物识别[J]. 草地学报,2022,30(11):3165-3174 [6] 申洋洋,陈志超,胡昊,等. 基于无人机多时相遥感影像的冬小麦产量估算[J]. 麦类作物学报,2021,41(10):1298-1306 [7] ZHU W,FENG Z,DAI S,et al. Using UAV multispectral remote sensing with appropriate spatial resolution and machine learning to monitor wheat scab[J]. Agriculture,2022,12(11):1785 [8] JI J,LIU J,CHEN J,et al. Optimization of topdressing for winter wheat by accurate growth monitoring and improved production estimation[J]. Remote Sensing,2021,13(12):2349 [9] 陶惠林,冯海宽,徐良骥,等. 基于无人机高光谱遥感数据的冬小麦生物量估算[J]. 江苏农业学报,2020,36(5):1154-1162 [10] ZHU W X,SUN Z G,PENG J B,et al. Estimating maize above-ground biomass using 3D point clouds of multi-source unmanned aerial vehicle data at multi-spatial scales[J]. Remote Sensing (Basel,Switzerland),2019,11(22):2678 [11] MAIMAITIJIANG M,SAGAN V,SIDIKE P,et al. Vegetation Index Weighted Canopy Volume Model (CVMVI) for soybean biomass estimation from Unmanned Aerial System-based RGB imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2019,151:27-41 [12] CEN H,WAN L,ZHU J,et al. Dynamic monitoring of biomass of rice under different nitrogen treatments using a lightweight UAV with dual image-frame snapshot cameras[J]. Plant Methods,2019,15(1):32 [13] MIAN D,TIANLE Y,ZHAOSHENG Y,et al. Wheat biomass estimation in different growth stages based on color and texture features of UAV images[J]. Smart Agriculture,2022,4(1):71-83 [14] SARKER L R,NICHOL J E. Improved forest biomass estimates using ALOS AVNIR-2 texture indices[J]. Remote Sensing of Environment,2011,115(4):968-977 [15] 刘畅,杨贵军,李振海,等. 融合无人机光谱信息与纹理信息的冬小麦生物量估测[J]. 中国农业科学,2018,51(16):3060-3073 [16] 陆国政,杨贵军,赵晓庆,等. 基于多载荷无人机遥感的大豆地上鲜生物量反演[J]. 大豆科学,2017,36(1):41-50 [17] GEIPEL J,LINK J,WIRWAHN J,et al. A programmable aerial multispectral camera system for in-season crop biomass and nitrogen content estimation[J]. Agriculture,2016,6(1):4 [18] NIU Y,ZHANG L,ZHANG H,et al. Estimating above-ground biomass of maize using features derived from UAV-based RGB imagery[J]. Remote Sensing,2019,11(11):1261 [19] HINTZ R W,ALBRECHT K A. Dry matter partitioning and forage nutritive value of soybean plant components[J]. Agronomy Journal,1994,86(1):59-62 [20] HACKLEMAN J C. Future of the soybean as a forage crop[J]. Agronomy Journal,1924,16(3):228-236 [21] 井宇航,郭燕,张会芳,等. 无人机飞行高度对冬小麦植株氮积累量预测模型的影响[J]. 河南农业科学,2022,51(2):147-158 [22] 石雅娇,陈鹏飞. 基于无人机高光谱影像的玉米地上生物量反演[J]. 中国农学通报,2019,35(17):117-123 [23] 王靖,彭漪,刘小娟,等. 基于无人机多光谱数据的水稻LAI反演与应用[J]. 中国农业大学学报,2021,26(12):145-156 [24] DAUGHTRY C S T,WALTHALL C L,KIM M S,et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance[J]. Remote Sensing of Environment,2000,74(2):229-239 [25] HARALICK R M,SHANMUGAM K,DINSTEIN I. Textural features for image classification[J]. IEEE Transactions on Systems,Man,and Cybernetics,1973,3(6):610-621 [26] 潘瑞炽. 植物生理学[M]. 北京:高等教育出版社,2008:256 [27] 李均容. 基于高光谱技术的大豆育种材料产量及农学参数反演研究[D]. 成都:四川农业大学,2022:19-20 [28] 董钻著. 大豆产量生理[M]. 北京:中国农业出版社,2012:127-128 [29] 龚荣新,鲁向晖,张海娜,等. 基于高光谱植被指数的大豆地上部生物量估算模型研究[J]. 大豆科学,2023,42(3):352-359 [30] 刘杨,冯海宽,孙乾,等. 不同分辨率无人机数码影像的马铃薯地上生物量估算研究[J]. 光谱学与光谱分析,2021,41(5):1470-1476 [31] 杭艳红,苏欢,于滋洋,等. 结合无人机光谱与纹理特征和覆盖度的水稻叶面积指数估算[J]. 农业工程学报,2021,37(9):64-71 [32] 朱永基,陶新宇,陈小芳,等. 基于无人机多光谱影像植被指数与纹理特征的冬小麦地上部生物量估算[J]. 浙江农业学报,2023,35(12):2966-2976 [33] 王伟康,张嘉懿,汪慧,等. 基于固定翼无人机多光谱影像的水稻长势关键指标无损监测[J]. 中国农业科学,2023,56(21):4175-4191 [34] 向友珍,安嘉琪,赵笑,等. 基于无人机多光谱遥感的大豆生长参数和产量估算[J]. 农业机械学报,2023,54(8):230-239 [35] 樊意广,冯海宽,刘杨,等. 利用无人机多源传感器估算马铃薯植株氮含量[J]. 光谱学与光谱分析,2022,42(10):3217-3225 [36] 刘欣谊,仲晓春,陈晨,等. 利用无人机图像颜色与纹理特征数据在小麦生育前期对产量进行预测[J]. 麦类作物学报,2020,40(8):1002-1007(责任编辑 闵芝智)第32卷 第10期 Vol.32 No. 10草 地 学 报 ACTAAGRESTIASINICA 2024年 10月 |