[1] 赵月. 两种典型抗生素在土壤-植物体系中的迁移及生态毒性研究[D]. 石家庄:河北科技大学,2016:1-2 [2] 裴孟,梁玉婷,易良银,等. 黑麦草对土壤中残留抗生素的降解及其对微生物活性的影响[J]. 环境工程学报,2017,11(5):3179-3186 [3] 王晓洁,赵蔚,张志超,等. 兽用抗生素在土壤中的环境行为、生态毒性及危害调控[J]. 中国科学:技术科学,2021,51(6):615-636 [4] WANG C,ZHENG S S,WANG P F,et al. Effects of vegetations on the removal of contaminants in aquatic environments:A review.[J]. Journal of Hydrodynamics,2014,26(4),497-511 [5] 吴玉清,王永会,李祥,等. 黑麦草对土壤中抗生素的降解及其机理研究[J]. 安徽化工,2021,47(5):63-68 [6] SHI Y K,LIN H,MA J W,et al. Degradation of tetracycline antibiotics by Arthrobacter nicotianae OTC-16[J]. Journal of Hazardous Materials,2020(403):123996 [7] QI W,LONG J,FENG C,et al. Fe3+ enhanced degradation of oxytetracycline in water by pseudomonas.[J]. Water research,2019(160):361-370 [8] SHAO S C,HU Y Y,CHENG J H,et al. Action of oxytetracycline (OTC) degrading bacterium and its application in Moving Bed Biofilm Reactor (MBBR) for aquaculture wastewater pre-treatment.[J]. Ecotoxicology and Environmental Safety,2019,171,833-842 [9] 成洁,杜慧玲,张天宝,等. 四环素类抗生素降解菌的分离与鉴定[J]. 核农学报,2017,31(5),884-888 [10] LODEWYCKX C,VANGRONSVELD J,PORTEOUS F,et al. Endophytic bacteria and their potential applications[J]. Critical reviews in plant sciences,2002,21(6):583-606 [11] 张欣阳. 四环素降解菌的降解性能优化及其与植物联合作用的研究[D]. 福州:福建师范大学,2015:3-10 [12] 李昌宁,韩冰,茆士琴,等. 四环素降解细菌菌群的富集驯化及特性研究[J]. 草原与草坪,2020,40(3):63-68 [13] HAN T,LIANG Y P,WU Z N,et al. Effects of tetracycline on growth,oxidative stress response,and metabolite pattern of ryegrass[J]. Journal of hazardous materials,2019(380):120885 [14] 陈春舟,马占军,孟亚雄,等. 小麦种质资源抗旱耐盐性评价及种质筛选[J]. 分子植物育种,2021,19(14):4820-4835 [15] ARNON D I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris[J]. Plant physiology,1949,24(1):1 [16] WALKER D J,ROMERO P,CORREAL E. Cold tolerance,water relations and accumulation of osmolytes in Bituminaria bituminosa[J]. Biologia Plantarum,2010,54(2):293-298 [17] 王加真. 五种芽孢杆菌微生物肥料在盆栽条件下对多年生黑麦草的促生作用及对土壤养分变化的影响研究[D]. 兰州:甘肃农业大学,2003:11-12 [18] 詹杰,魏树和. 四环素在土壤和水环境中的分布及其生态毒性与降解[J]. 生态学报,2015,35(9):2819-2825 [19] 裴孟,梁玉婷,易良银,等. 黑麦草对土壤中残留抗生素的降解及其对微生物活性的影响[J]. 环境工程学报,2017,11(5):3179-3186 [20] SHI W L,CHEN X L,WANG L X,et al. Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols,a class of linear peptide antibiotics mainly produced by Trichoderma spp[J]. Journal of experimental botany,2016,67(8):2191-2205. [21] 汪梦竹. 油菜和小麦种苗根系对乙草胺耐性差异的分析[D]. 杨凌:西北农林科技大学,2016:18-20 [22] LIU H,MA C X,CHEN G C,et al. Titanium dioxide nanoparticles alleviate tetracycline toxicity to Arabidopsis thaliana (L.)[J]. ACS Sustainable Chemistry & Engineering,2017,5(4):3204-3213 [23] 宋建丽,秦俊梅,熊华烨,等. 添加不同基质对含四环素土壤玉米幼苗生理特性的影响[J]. 水土保持学报,2019,33(2):342-349 [24] RYDZYN'SKI D,PIOTROWICZ-CIEŠLAK A I,GRAJEK H,et al. Instability of chlorophyll in yellow lupin seedlings grown in soil contaminated with ciprofloxacin and tetracycline[J]. Chemosphere,2017(184):62-73 [25] 尉欣荣,张智伟,周雨,等. 褪黑素对低温和干旱胁迫下多年生黑麦草幼苗生长和抗氧化系统的调节作用[J]. 草地学报,2020,28(5),1337-1345 [26] 郝磊,弓丽花,黄永芳. 铝胁迫对3种油茶初生根生理特性的影响[J]. 贵州农业科学,2017,45(2):124-129 [27] PERREAULT F,POPOVIC R,DEWEZ D. Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba[J]. Environmental Pollution,2014,185:219-227 [28] AHMED M B M,RAJAPAKSHA A U,LIM J E,et al. Distribution and accumulative pattern of tetracyclines and sulfonamides in edible vegetables of cucumber,tomato,and lettuce[J]. Journal of Agricultural and Food Chemistry,2015,63(2):398-405 [29] EGGEN T,ASP T N,GRAVE K,et al. Uptake and translocation of metformin,ciprofloxacin and narasin in forage-and crop plants[J]. Chemosphere,2011,85(1):26-33 [30] 曹书苗,王文科,王非,等. 放线菌Act12对Pb胁迫下黑麦草根系生长及抗性生理的影响[J]. 农业环境科学学报,2016,35(10):1881-1887 [31] 魏倩,周际海,程双怀,等. 黑麦草生长及根系形态对土壤Cd,Pb与石油污染的响应[J]. 水土保持通报,2021,41(2):84-91 [32] 魏晓琼,贾文飞,马靖恒,等. 植物生长调节剂对植株生长发育的影响概述[J]. 北方园艺,2022 (4):118-125 [33] 赵佳怡,熊茂岑,王鑫,等. Frankia菌-细枝木麻黄共生体系对土壤Pb污染的响应研究[J]. 四川林业科技,2022,43(1):31-36 [34] 王栋麟,王琳,吴亚,等. 铝胁迫下添加水杨酸对黑麦草生理及叶绿素荧光参数的影响[J]. 草原与草坪,2021,41(6):88-97 [35] 黄玉婷,刘大林,张卫红,等. 柠檬酸对铝胁迫下苗期黑麦草生长生理的影响[J]. 环境科学与技术,2019,42(7):44-50 [36] 和秋兰,张航,王正维,等. 外源褪黑素对低温胁迫下马铃薯幼苗抗氧化系统的影响[J]. 华北农学报,2022,37(1):103-111 [37] 刘鹏,崔彤彤,孙鹏越,等. 嗜冷乳糖节杆菌B7对遮阴胁迫下多年生黑麦草幼苗生长和抗氧化防御系统的影响[J]. 草业科学,2021,38(1):81-88 [38] 张新飞,佘木子,李晗玉,等.琥珀酸黄杆菌促生机理及其对多年生黑麦草生长和抗逆性的生理调控作用[J]. 草地学报,2021,29(8):1704-1711. [39] 孙韵雅,陈佳,王悦,等. 根际促生菌促生机理及其增强植物抗逆性研究进展[J]. 草地学报,2020,28(5):1203-1215 |