[1] HARRISON M J. Cellular programs for arbuscular mycorrhizal symbiosis[J]. Current Opinion in Plant Biology,2012,15(6):691-698 [2] BEGUM N,QIN C,AHANGER M A,et al. Role of arbuscular mycorrhizal fungi in plant growth regulation:implications in abiotic stress tolerance[J]. Frontiers in Plant Science,2019(10):1068 [3] JOHNSON N C,HOEKSEMA J D,BEVER J D,et al. From lilliput to brobdingnag:extending models of mycorrhizal function across scales[J]. Bioscience,2006,56(11):889-900 [4] YADAV A,SURI V K,KUMAR A,et al. Enhancing plant water relations,quality,and productivity of Pea (Pisum sativum L.) through arbuscular mycorrhizal fungi,inorganic phosphorus,and irrigation regimes in an himalayan acid alfisol[J]. Communications in Soil Science and Plant Analysis,2015,46(1):80-93 [5] VAN DER HEIJDEN M G A,BAKKER R,VERWAAL J,et al. Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grassland[J]. Fems Microbiology Ecology,2006,56(2):178-187 [6] ZHANG L,ZHOU J,GEORGE T S,et al. Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra[J]. Trends in Plant Science,2022,27(4):402-411 [7] MARSCHNER H,DELL B. Nutrient uptake in mycorrhizai symbiosis[J]. Plant and Soil,1994,159(1):89-102 [8] KIERS E T,DUHAMEL M,BEESETTY Y,et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis[J]. Science,2011,333(6044):880-882 [9] BEYHAUT E,LARSON D L,ALLAN D L,et al. Legumes in prairie restoration:evidence for wide cross-nodulation and improved inoculant delivery[J]. Plant and Soil,2014,377(1-2):245-258 [10] LU Q,JIANG H,TIAN J,et al. Rhizobia enhance acquisition of phosphorus from different sources by soybean plants[J]. Plant and Soil,2011,349(1-2):25-36 [11] LARIMER A L,BEVER J D,CLAY K. The interactive effects of plant microbial symbionts:a review and meta-analysis[J]. Symbiosis,2010,51(2):139-148 [12] AFKHAMI M E,ALMEIDA B K,HERNANDEZ D J,et al. Tripartite mutualisms as models for understanding plant-microbial interactions[J]. Current Opinion in Plant Biology,2020,56:28-36 [13] 马玉一. 红三叶接种丛枝菌根真菌和根瘤菌对根系构型和植物及土壤氮,磷的影响[D]. 太原:山西农业大学,2017:1-2 [14] 谢开云,孙伶俐,张力文,等. 菌根真菌和根瘤菌接种对紫花苜蓿和无芒雀麦混播牧草生物量的影响[J]. 草地学报,2021,29(1):182-188 [15] 王桂花. 大豆/玉米间作中双接种AM真菌和根瘤菌对氮、碳分配的影响[D]. 广州:华南农业大学,2016:3-4 [16] FERRARI A E,WALL L G. Coinoculation of black locust with rhizobium and glomus on a desurfaced soil[J]. Soil Science,2008,173(3):195-202 [17] NDOYE F,KANE A,DIEDHIOU A G,et al. Effects of dual inoculation with arbuscular mycorrhizal fungi and rhizobia on Acacia senegal (L.) Willd. seedling growth and soil enzyme activities in senegal[J]. International Journal of Biosciences,2015(6):36-48 [18] MA X,GENG Q,ZHANG H,et al. Global negative effects of nutrient enrichment on arbuscular mycorrhizal fungi,plant diversity and ecosystem multifunctionality[J]. New Phytologist,2021,229(5):2957-2969 [19] HAN M. Responses of arbuscular mycorrhizal fungi to nitrogen addition:a meta-analysis[J]. Global Change Biology,2020,26(12):7229-7241 [20] PENN C J,CAMBERATO J J. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants[J]. Agriculture,2019,9(6):120 [21] UDVARDI M,POOLE P S. Transport and metabolism in legume-rhizobia symbioses[J]. Annual Review of Plant Biology,2013,64(1):781-805 [22] 王晓英,王冬梅,黄益宗. 不同施氮水平下AMF群落对白三叶草生长及养分吸收的影[J]. 北京林业大学学报,2011,33(2):143-148 [23] WANG X,FENG H,WANG Y,et al. Mycorrhizal symbiosis modulates the rhizosphere microbiota to promote rhizobia-legume symbiosis[J]. Molecular Plant,2021,14(3):503-516 [24] 郭晗铃,刘世俊,徐静,等. 丛枝菌根真菌对双子叶植物生长和根系特征的影响:整合分析[J]. 生态学杂志,2017,36(7):1855-1864 [25] 王军. 不同施肥水平下接种AMF和根瘤菌对紫花苜蓿生长及养分吸收的影响[D]. 北京:北京林业大学,2012:4-5 [26] 王晓锋,张磊,袁兴中. 施磷与接种耐酸根瘤菌对酸性黄壤中紫花苜蓿生长、结瘤的影[J]. 三峡生态环境监测,2018,3(1):59-65 [27] 贺学礼,李君,贺超. AM真菌与施氮量对丹参幼苗化学成分的影响[J]. 中国农学通报,2009,25(14):182-185 [28] TRESEDER K K,ALLEN M F. Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi:a model and field test[J]. New Phytologist,2002,155(3):507-515 [29] HEDGES L V,GUREVITCH J,CURTIS P S. The meta-analysis of response ratios in experimental ecology[J]. Ecology,1999,80(4):1150-1156 [30] ADAMS D C,GUREVITCH J,ROSENBERG M S. Resampling tests for meta-analysis of ecological data[J]. Ecology,1997,78(4):1277-1283 [31] PRIMIERI S,MAGNOLI S M,KOFFEL T,et al. Perennial,but not annual legumes synergistically benefit from infection with arbuscular mycorrhizal fungi and rhizobia:A meta-analysis[J]. New Phytologist,2022,233(1):505-514 [32] LIU L,WANG X,LAJEUNESSE M J,et al. A cross-biome synthesis of soil respiration and its determinants under simulated precipitation changes[J]. Global Change Biology,2016,22(4):1394-1405 [33] SULIEMAN S,TRAN L S. Asparagine:an amide of particular distinction in the regulation of symbiotic nitrogen fixation of legumes[J]. Critical Reviews in Biotechnology,2013,33(3):309-327 [34] JOHNSON N C. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales[J]. New Phytologist,2010,185(3):631-647 [35] LARIMER A L,CLAY K,BEVER J D. Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume[J]. Ecology,2014,95(4):1045-1054 [36] VASSILEV N,VASSILEVA M,AZCON R,et al. Interactions of an arbuscular mycorrhizal fungus with free or co-encapsulated cells of rhizobium trifoli and yarowia lipolytica inoculated into a soil-plant system[J]. Biotechnology Letters,2001,23(2):149-151 [37] LEKBERG Y,KOIDE R T. Arbuscular mycorrhizal fungi,rhizobia,available soil P and nodulation of groundnut (Arachis hypogaea) in Zimbabwe[J]. Agriculture Ecosystems and Environment,2005,110(3-4):143-148 [38] ANTUNES P M,DE VARENNES A,RAJCAN I,et al. Accumulation of specific flavonoids in soybean (Glycine max (L.) Merr.) as a function of the early tripartite symbiosis with arbuscular mycorrhizal fungi and Bradyrhizobium japonicum (Kirchner) Jordan[J]. Soil Biology and Biochemistry,2006,38(6):1234-1242 [39] VARENNES A D,GOSS M J. The tripartite symbiosis between legumes,rhizobia and indigenous mycorrhizal fungi is more efficient in undisturbed soil[J]. Soil Biology and Biochemistry,2007,39(10):2603-2607 [40] HINSINGER P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes:a review[J]. Plant and Soil,2001,237(2):173-195 [41] DODD J C,BURTON C C,BURNS R G,et al. Phosphatase-activity associated with the roots and the rhizosphere of plants infected with vesicular arbuscular mycorrhizal fungi[J]. New Phytologist,1987,107(1):163-172 [42] BERTA G,FUSCONI A,TROTTA A,et al. Morphogenetic modifications induced by the mycorrhizal fungus glomus strain E3 in the root-system of Allium porrum L[J]. New Phytologist,1990,114(2):207-215 [43] 蒙程,陆妮,柴琦. 不同pH下接种AM真菌和根瘤菌对紫花苜蓿生长的影响[J]. 草业科学,2017,34(2):352-360 [44] SHANTZ A A,LEMOINE N P,BURKEPILE D E. Nutrient loading alters the performance of key nutrient exchange mutualisms[J]. Ecology Letters,2016,19(1):20-28 [45] TIAN D,NIU S. A global analysis of soil acidification caused by nitrogen addition[J]. Environmental Research Letters,2015,10(2):1714-1721 [46] STEVENS C J,DAVID T I,STORKEY J. Atmospheric nitrogen deposition in terrestrial ecosystems:Its impact on plant communities and consequences across trophic levels[J]. Functional Ecology,2018,32(7):1757-1769 [47] LILLESKOV E A,KUYPER T W,BIDARTONDO M I,et al. Atmospheric nitrogen deposition impacts on the structure and function of forest mycorrhizal communities:A review[J]. Environmental Pollution,2019,246:148-162 [48] JIA Y,GRAY V M,STRAKER C J. The influence of rhizobium and arbuscular mycorrhizal fungi on nitrogen and phosphorus accumulation by Vicia faba[J]. Annals of botany,2004,94(2):251-258 [49] JAYARAMAN D,FORSHEY K L,GRIMSRUD P A,et al. Leveraging proteomics to understand plant-microbe interactions[J]. Frontiers in Plant Science,2012(3):44 |