[1] GOLLDACK D,LI C,MOHAN H,et al. Tolerance to drought and salt stress in plants:unraveling the signaling networks[J]. Frontiers in Plant Science,2014,5(1):52 [2] LIANG K,WANG A,SUN Y,et al. Identification and expression of NAC transcription factors of Vaccinium corymbosum L. in response to drought stress[J]. Forests,2019,10(12):1088 [3] MA D,CONSTABEL C P. MYB repressors as regulators of phenylpropanoid metabolism in plants[J]. Trends in Plant Science,2019,24(3):275-289 [4] YAN C,XIAO Y,KUN H,et al. The MYB transcription factor superfamily of Arabidopsis:expression analysis and phylogenetic comparison with the rice MYB family[J]. Plant Molecular Biology,2006,60(1):107-124 [5] ZHOU J L,LEE C H,ZHONG R Q,et al. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis[J]. The Plant Cell,2009(21):248-266 [6] HIRANO K,KONDO M,AYA K,et al. Identification of transcription factors involved in rice secondary cell wall formation[J]. Plant Cell Physiology,2013,54(11):1791-1802 [7] RAO X,CHEN X,SHEN H,et al. Gene regulatory networks for lignin biosynthesis in switchgrass (Panicum virgatum)[J]. Plant Biotechnology Journal,2019,17(3):580-593 [8] XU Q,YIN X R,ZENG J K,et al. Activator- and repressor-type MYB transcription factors are involved in chilling injury induced flesh lignification in loquat via their interactions with the phenylpropanoid pathway[J]. Journal of Experimental Botany,2014,65(15):4349-4359 [9] CHEN,K,SONG,M,GUO,Y,et al. MdMYB46 could enhance salt and osmotic stress tolerance in apple by directly activating stress-responsive signals[J]. Plant Biotechnology Journal,2019,17(12):2341-2355 [10] GUO H Y,WANG Y C,WANG L Q,et al. Expression of the MYB transcription factor gene BplMYB46 affects abiotic stress tolerance and secondary cell wall deposition in Betula platyphylla[J]. Plant Biotechnology Journal,2017,15(1):107-121 [11] JI H,WANG Y,CLOIX C,et al. The Arabidopsis RCC1 family protein TCF1 regulates freezing tolerance and cold acclimation through modulating lignin biosynthesis[J]. PLoS Genet,2015,11(9):e1005471 [12] ZHOU L,SHI K,CUI X R,et al. Overexpression of MsNAC51 from alfalfa confers drought tolerance in tobacco[J]. Environmental and Experimental Botany,2023(205):105143 [13] KENNETH J,THOMAS D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod[J]. Methods,2001,25(4):402-408 [14] HOLSTERS M,WAELE D,DEPICKER A,et al. Transfection and transformation of Agrobacterium tumefaciens[J]. Molecular and General Genetics,1978,163(2):181-187 [15] YANG Y,LI R,QI M. In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves[J]. The Plant Journal,2000,22(6):543-551 [16] LIU Z,MA C,HOU L,et al. Exogenous SA affects rice seed germination under salt stress by regulating Na+/K+ balance and endogenous GAs and ABA homeostasis[J]. International Journal of Molecular Sciences,2022,23(6):3293 [17] FU X,YANG Y,KANG M,et al. Evolution and stress responses of CLO genes and potential function of the GhCLO06 gene in salt resistance of Cotton[J]. Frontiers in Plant Science,2022(12):801239 [18] WANG J,ZHANG L,CAO Y,et al. CsATAF1 positively regulates drought stress tolerance by an ABA-dependent pathway and by promoting ROS scavenging in cucumber[J]. Plant Cell Physiology,2018,59(5):930-945 [19] 王少鹏,刘佳,洪军,等. 紫花苜蓿MsPPR1基因的克隆及抗旱功能分析[J].草业学报,2023,32(7):49-60 [20] SHEN C,DU H,CHEN Z,et al. The chromosome-level genome sequence of the autotetraploid Alfalfa and resequencing of core germplasms provide genomic resources for Alfalfa research[J]. Molecular Plant,2020,13(9):1250-1261 [21] 梁欢,韦宝,陈静,等. 基于叶绿素荧光参数的紫花苜蓿种质苗期抗旱性评价[J]. 草地学报,2020,28(1):45-55 [22] 任明辉,张雨蓬,许涛,等. 紫花苜蓿R2R3-MYB亚家族鉴定与干旱胁迫下的表达分析[J]. 草地学报,2023,31(4):972-983 [23] 蒋宇佳,于元平,孙向一,等. 假俭草R2R3-MYB基因家族的鉴定及其在干旱胁迫下的表达模式分析[J]. 草地学报,2023,31(9):2628-2641 [24] WEI Q,CHEN R,WEI X,et al. Genome-wide identification of R2R3-MYB family in wheat and functional characteristics of the abiotic stress responsive gene TaMYB344[J]. BMC Genomics,2020,21(1):792 [25] YANG J,ZHANG B,GU G,et al. Genome-wide identification and expression analysis of the R2R3-MYB gene family in tobacco (Nicotiana tabacum L.)[J]. BMC Genomics,2022,23(1):432 [26] FELLER A,MACHEMER K,BRAUN E L,et al. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors[J]. The Plant Journal,2011,66(1):94-116 [27] DUBOS C,STRACKE R,GROTEWOLD E,et al. MYB transcription factors in Arabidopsis[J]. Trends in Plant Science,2010,15(10):573-581 [28] DU H,YANG S S,LIANG Z,et al. Genome-wide analysis of the MYB transcription factor superfamily in soybean[J]. BMC Plant Biology,2012,12(1):106 [29] CHEN Y H,YANG X Y,HE K,et al. The MYB transcription factor superfamily of Arabidopsis:expression analysis and phylogenetic comparison with the rice MYB family[J]. Plant Molecular Biology,2006,60(1):107-124 [30] 丁庆倩,王小婷,胡利琴,等. 谷子MYB类转录因子SiMYB42提高转基因拟南芥低氮胁迫耐性[J]. 遗传,2018,40(4):327-338 [31] 贾志强,许云玉,高雪,等. 辣椒CaWRKY30转录因子的克隆、亚细胞定位及番茄斑萎病毒侵染下的表达分析[J]. 华北农学报,2022,37(3):186-192 [32] LI Z,LONG R,ZHANG T,et al. Molecular cloning and functional analysis of the drought tolerance gene MsHSP70 from alfalfa (Medicago sativa L.)[J]. Journal of Plant Research,2017,130(2):1-10 [33] LUO D,LIU J,WU Y,et al. NUCLEAR TRANSPORT FACTOR 2-LIKE improves drought tolerance by modulating leaf water loss in alfalfa (Medicago sativa L.)[J]. The Plant Journal,2022,112(2):429-450 [34] MA J,QIU D,GAO H,et al. Over-expression of a γ-tocopherol methyltransferase gene in vitamin E pathway confers PEG-simulated drought tolerance in alfalfa[J]. BMC Plant Biology,2020,20(1):1-16 [35] SONG Y,LV J,QIU N,et al. The constitutive expression of alfalfa MsMYB2L enhances salinity and drought tolerance of Arabidopsis thaliana[J]. Plant Physiology and Biochemistry,2019(141):300-305 [36] APEL K,HIRT H. Reactive oxygen species:metabolism,oxidative stress,and signal transduction[J]. Annual Review of Plant Biology,2004(55):373-399 [37] ZHAO H,LI Z,WANG Y,et al. Cellulose synthase-like protein OsCSLD4 plays an important role in the response of rice to salt stress by mediating abscisic acid biosynthesis to regulate osmotic stress tolerance[J]. Plant Biotechnology Journal,2022,20(3):468-484 [38] FANG L,ZHAO F,CONG Y,et al. Rolling-leaf14 is a 2OG-Fe (II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves[J]. Plant Biotechnology Journal,2012,10(5):524-532 |