[1] SHARPLEY A N, SMITH S J. Fractionation of inorganic and organic phosphorus in virgin and cultivated soils[J]. Soil Science Society of America Journal, 1985, 49(1):127-130 [2] JUNGK A, SEELING B, GERKE J. Mobilization of different phosphate fractions in the rhizosphere[M]//Plant Nutrition-from Genetic Engineering to Field Practice. Springer, Dordrecht, 1993:95-98 [3] BIELESKI R L. Phosphate pools, phosphate transport, and phosphate availability[J]. Annual review of Plant Physiology, 1973, 24(1):225-252 [4] SCHACHTMAN D P, REID R J, AYLING S M. Phosphorus uptake by plants:from soil to cell[J]. Plant Physiology, 1998, 116(2):447-453 [5] HINSINGER P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes:a review[J]. Plant and Soil, 2001, 237(2):173-195 [6] KOCHIAN L V. Plant nutrition:rooting for more phosphorus[J]. Nature, 2012, 488(7412):466-467 [7] 李维, 高辉, 罗英杰, 等. 国内外磷矿资源利用现状, 趋势分析及对策建议[J]. 中国矿业, 2015, 24(6):6-10 [8] GODFRAY H C J, BEDDINGTON J R, CRUTE I R, et al. Food security:the challenge of feeding 9 billion people[J]. Science, 2010, 327(5967):812-818 [9] LYNCH J P. Root phenes for enhanced soil exploration and phosphorus acquisition:tools for future crops[J]. Plant Physiology, 2011, 156(3):1041-1049 [10] SANCHEZ P A. Properties and Management of Soils in the Tropics[J]. Soil Science, 1977, 124(3):187-187 [11] WITHERS P J A, EDWARDS A C, FOY R H. Phosphorus cycling in UK agriculture and implications for phosphorus loss from soil[J]. Soil Use and Management, 2001, 17(3):139-149 [12] 陈洁, 南丽丽, 汪堃, 等.低磷胁迫对红豆草光合、叶绿素荧光及内源激素的影响[J].草地学报, 2023, 31(1):112-119 [13] LYNCH J P, BROWN K M. Topsoil foraging-an architectural adaptation of plants to low phosphorus availability[J]. Plant and Soil, 2001, 237(2):225-237 [14] LYNCH J P, BROWN K M. New roots for agriculture:exploiting the root phenome[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2012, 367(1595):1598-1604 [15] MUDGE S R, RAE A L, DIATLOFF E, et al. Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis[J]. The Plant Journal, 2002, 31(3):341-353 [16] PASZKOWSKI U, KROKEN S, ROUX C, et al. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis[J]. Proceedings of the National Academy of Sciences, 2002, 99(20):13324-13329 [17] RAUSCH C, BUCHER M. Molecular mechanisms of phosphate transport in plants[J]. Planta, 2002, 216(1):23-37 [18] HUANG C Y, SHIRLEY N, GENC Y, et al. Phosphate utilization efficiency correlates with expression of low-affinity phosphate transporters and noncoding RNA, IPS1, in barley[J]. Plant Physiology, 2011, 156(3):1217-1229 [19] ZHANG H W, HUANG Y, YE X S, et al. Genotypic variation in phosphorus acquisition from sparingly soluble P sources is related to root morphology and root exudates in Brassica napus[J]. Science China Life Sciences, 2011, 54(12):1134-1142 [20] LEISER W L, RATTUNDE H F W, WELTZIEN E, et al. Phosphorus uptake and use efficiency of diverse West and Central African sorghum genotypes under field conditions in Mali[J]. Plant and Soil, 2014, 377(1-2):383-394 [21] SHENOY V V, KALAGUDI G M. Enhancing plant phosphorus use efficiency for sustainable cropping[J]. Biotechnology Advances, 2005, 23(7-8):501-513 [22] FAGERIA N K, BALIGAR V C, LI Y C. The role of nutrient efficient plants in improving crop yields in the twenty first century[J]. Journal of Plant Nutrition, 2008, 31(6):1121-1157 [23] HUFNAGEL B, DE SOUSA S M, ASSIS L, et al. Duplicate and conquer:multiple homologs of Phosphorus-starvation tolerance1 enhance phosphorus acquisition and sorghum performance on low-phosphorus soils[J]. Plant Physiology, 2014, 166(2):659-677 [24] WANG Q, WANG J, YANG Y, et al. A genome-wide expression profile analysis reveals active genes and pathways coping with phosphate starvation in soybean[J]. BMC Genomics, 2016, 17(192):1-11 [25] DOUMBIA M D, HOSSNER L R, ONKEN A B. Variable sorghum growth in acid soils of subhumid West Africa[J]. Arid Land Research and Management, 1993, 7(4):335-346 [26] DOUMBIA M D, HOSSNER L R, ONKEN A B.Sorghum growth in acid soils of West Africa:variations in soil chemical properties[J]. Arid Land Research and Management, 1998, 12(2):179-190 [27] ZERBINI E, THOMAS D. Opportunities for improvement of nutritive value in sorghum and pearl millet residues in South Asia through genetic enhancement[J]. Field Crops Research, 2003, 84(1-2):3-15 [28] 罗峰, 李子芳, 高建明, 等. 氮磷钾肥对甜高梁含糖量和子粒产量的影响[J]. 湖北农业科学, 2013, 52(22):5459-5462 [29] QUEIROZ O C M, ADESOGAN A T, ARRIOLA K G, et al. Effect of a dual-purpose inoculant on the quality and nutrient losses from corn silage produced in farm-scale silos[J]. Journal of Dairy Science, 2012, 95(6):3354-3362 [30] 马建华, 王玉国, 孙毅, 等. 低磷胁迫对不同品种高粱苗期形态及生理指标的影响[J]. 植物营养与肥料学报, 2013, 19(5):1083-1091 [31] 刘鹏, 武爱莲, 王劲松, 等. 不同基因型高粱的磷效率和磷素转运特性研究[J]. 山西农业科学, 2018, 46(3):344-349 [32] ZHANG J, JIANG F, SHEN Y, et al. Transcriptome analysis reveals candidate genes related to phosphorus starvation tolerance in sorghum[J]. BMC Plant Biology, 2019, 19(306):1-18 [33] 郑金凤, 米少艳, 婧姣姣, 等. 小麦代换系耐低磷生理性状的主成分分析及综合评价[J]. 中国农业科学, 2013, 46(10):1984-1993 [34] 潘新雅,李军保,陈阳,等. 6个紫花苜蓿品种根系形态结构对低磷胁迫的响应[J].草地学报,2021,29(11):2494-2504 [35] 马帅国,田蓉蓉,胡慧,等. 粳稻种质资源苗期耐盐性综合评价与筛选[J].植物遗传资源学报,2020,21(5):1089-1101 [36] 武兆云, 郭娜, 赵晋铭, 等. 大豆苗期耐低磷主成分及隶属函数分析[J]. 大豆科学, 2012, 31(1):42-46 [37] 王军, 周美学, 许如根, 等. 大麦耐湿性鉴定指标和评价方法研究[J]. 中国农业科学, 2007, 40(10):2145-2152 [38] 白志英, 李存东, 孙红春, 等. 小麦代换系抗旱性生理指标的主成分分析及综合评价[J]. 中国农业科学, 2008, 41(12):4264-4272 [39] 朱宗河, 郑文寅, 张学昆. 甘蓝型油菜耐旱相关性状的主成分分析及综合评价[J]. 中国农业科学, 2011, 44(9):1775-1787 |