[1] 云锦凤,米福贵. 冰草属牧草的种类与分布[J]. 中国草地,1989(3):14-17 [2] 马艳红,于肖夏,于卓,等. 四倍体杂交冰草新品系的细胞学鉴定及SSR分析[J]. 麦类作物学报,2014,34(2):187-193 [3] 于肖夏,姜志艳,于卓,等. 四倍体杂交冰草新品种——蒙杂冰草1号的选育[J]. 草业科学,2015,32(5):738-744 [4] 赵彦,陈雪英,石凤敏,等. 蒙古冰草MwDREB3基因的克隆及表达分析[J]. 草地学报,2015,23(2):377-382 [5] MUNDY J,CHUA N H. Abscisic acid and water-stress induce the expression of a novel rice gene[J]. The EMBO Journal,1988,7(8):2279-2286 [6] BANERJEE A,ROYCHOUDHURY A. Group II late embryogenesis abundant (LEA) proteins:structural and functional aspects in plant abiotic stress[J]. Plant Growth Regulation,2016,79(1):1-17 [7] 夏惠,林玲,高帆,等. 植物脱水素对多种逆境的响应[J]. 干旱地区农业研究,2014,32(4):47-52 [8] DURE 3rd L,CROUCH M,HARADA J,et al. Common amino acid sequence domains among the LEA proteins of higher plants[J]. Plant Molecular Biology,1989,12(5):475-486 [9] 冯闯,王珊珊,赵晨辉,等. 苹果脱水素基因生物信息学识别与表达分析[J]. 分子植物育种,2022,20(4):1112-1118 [10] 李跃强,宣维健,盛承发. 植物的低温蛋白[J]. 生态学报,2004,24(5):1034-1039 [11] ZHANG Y X,WANG Z,XU J. Molecular mechanism of dehydrin in response to environmental stress in plant[J]. Progress in Natural Science,2007,17(3):237-246 [12] INGRAM J,BARTELS D. The molecular basis of dehydration tolerance in plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1996,47(47):377-403 [13] MEURS C,BASRA A S,KARSSEN C M,et al. Role of abscisic acid in the induction of desiccation tolerance in developing seeds of Arabidopsis thaliana[J]. Plant Physiology,1992,98(4):1484-1493 [14] 王俊娟,王德龙,王帅,等. 陆地棉脱水素基因GhDHN1启动子序列分析[J]. 中国棉花,2017,44(5):10-12 [15] 雷晨,刘胜利,于婷乔,等. 沙冬青AmCIP基因结构及其内含子生物信息学分析[J]. 生物技术通报,2016,32(9):93-99 [16] 邵莉. 白刺花干旱和盐胁迫下生理响应机制及抗旱相关基因克隆[D]. 武汉:华中农业大学,2012:88-89 [17] 谢建平,袁世力,刘星辰,等. 狗牙根品种C299脱水素基因抗逆功能分析[J]. 中国草地学报,2018,40(4):16-22 [18] 刘思媛,孟小庆,张成彬,等. 甘薯脱水素基因IbDHN1的克隆、生物信息学及表达模式分析[J]. 江苏师范大学学报(自然科学版),2020,38(2):37-41 [19] 范菠菠,张学峰,于卓,等. 与蒙古冰草抗旱相关的NAC转录因子生物信息学及其表达分析[J]. 草地学报,2021,29(6):1183-1192 [20] PUHAKAINEN T,HESS M W,MÄKELÄ P,et al. Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis[J]. Plant Molecular Biology,2004,54(5):743-753 [21] CHIAPPETTA A,MUTO A,BRUNO L,et al. A dehydrin gene isolated from feral olive enhances drought tolerance in Arabidopsis transgenic plants[J]. Frontiers in Plant Science,2015,6(6):392 [22] BRINI F,HANIN M,LUMBRERAS V,et al. Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana[J]. Plant Cell Reports,2007,26(11):2017-2026 [23] YANG Y Q,SUN X D,YANG S H,et al. Molecular cloning and characterization of a novel SK3-type dehydrin gene from Stipa purpurea[J]. Biochemical and Biophysical Research Communications,2014,448(2):145-150 [24] 陈煜,马燕,国静,等. 芍药脱水素基因PlDHN2的克隆及表达分析[J]. 植物生理学报,2017,53(7):1297-1305 [25] XIE C,ZHANG R X,QU Y,et al. Overexpression of MtCAS31 enhances drought tolerance in transgenic Arabidopsis by reducing stomatal density[J]. The New Phytologist,2012,195(1):124-135 [26] LV A,WEN W W,FAN N N,et al. Dehydrin MsDHN1 improves aluminum tolerance of alfalfa (Medicago sativa L.) by affecting oxalate exudation from root tips[J]. The Plant Journal:for Cell and Molecular Biology,2021,108(2):441-458 [27] 张红梅,龚明贵,伍家发,等. 小麦YSK_2型脱水素基因WDHN2的克隆及表达分析[J]. 农业生物技术学报,2022,30(8):1443-1453 [28] LIU H,YU C Y,LI H X,et al. Overexpression of ShDHN,a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato[J]. Plant Science:an International Journal of Experimental Plant Biology,2015,231:198-211 [29] CAO Y X,XIANG X,GENG M T,et al. Effect of HbDHN1 and HbDHN2 genes on abiotic stress responses in Arabidopsis[J]. Frontiers in Plant Science,2017,8:470 [30] SUN Y B,LIU L H,SUN S K,et al. AnDHN,a dehydrin protein from Ammopiptanthus nanus,mitigates the negative effects of drought stress in plants[J]. Frontiers in Plant Science,2021,12:788938 [31] PENG Y H,REYES J L,WEI H,et al. RcDhn5,a cold acclimation-responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpressing Arabidopsis plants[J]. Physiologia Plantarum,2008,134(4):583-597 [32] BANERJEE A,ROYCHOUDHURY A. Group II late embryogenesis abundant (LEA) proteins:structural and functional aspects in plant abiotic stress[J]. Plant Growth Regulation,2016,79(1):1-17 [33] 徐学中,汪婷,万旺,等. 水稻ABA生物合成基因OsNCED3响应干旱胁迫[J]. 作物学报,2018,44(1):24-31 [34] 郭静远,邹智,孔华,等. 番木瓜干旱胁迫相关CpDHN1基因的克隆与分析[J]. 热带作物学报,2021,42(12):3492-3499 [35] 赵阳,王玉,蔡慧林,等.玉米脱水素基因家族的鉴定与分析[J]. 安徽农业大学学报,2015,42(5):657-665 [36] 陈娜,胡冬青,潘丽娟,等. 花生中胁迫相关基因AhDHN1的克隆及非生物胁迫下表达分析[J]. 核农学报,2014,28(12):2159-2166 [37] 田野,于正阳,史学英,等. 小麦脱水素wzy1-2基因的遗传转化及干旱胁迫下不同生育期表达水平[J]. 干旱地区农业研究,2019,37(6):1-7,15 [38] 张楠,张林生,邢媛,等. 扁穗冰草脱水素基因的克隆和表达特性分析[J]. 草地学报,2012,20(1):139-145(责任编辑 闵芝智)第32卷 第3期 Vol.32 No. 3草 地 学 报 ACTAAGRESTIASINICA 2024年 3月 |