[1] 张旭冉. 内蒙古典型草原土壤团聚体及有机碳对放牧强度的响应[D]. 呼和浩特:内蒙古师范大学,2021:1-5 [2] ZHANG X R,ZHANG W Q,CHUN F,et al. Grazing altered soil aggregates,nutrients and enzyme activities in a Stipa kirschnii steppe of Inner Mongolia[J]. Soil & Tillage Research,2022(219):105327 [3] 祁正超,常佩静,李永善,等.放牧对荒漠灌丛草地土壤团聚体组成及其稳定性的影响[J].干旱区研究,2021,38(1):87-94 [4] SARKER J R,SINGH B P,COWIE A L,et al. Agricultural management practices impacted carbon and nutrient concentrations in soil aggregates,with minimal influence on aggregate stability and total carbon and nutrient stocks in contrasting soils[J]. Soil & Tillage Research,2018(178):209-223 [5] 万欣. 青藏高原不同土地利用下土壤团聚体稳定性及有机碳动态[D]. 拉萨:西藏大学,2023:2-15,40 [6] YE L P,TAN W F,FANG L C,et al. Spatial analysis of soil aggregate stability in a small catchment of the Loess Plateau,China:I. Spatial variability[J]. Soil & Tillage Research,2018(179):71-81 [7] 邓志豪. 喀斯特区退耕地土壤团聚体稳定性及其有机碳分布特征[D]. 贵阳:贵州大学,2023:5 [8] 王楠楠. 不同耕作方式和秸秆还田对土壤团聚体及有机碳的影响[D]. 大庆:黑龙江八一农垦大学,2023:1-8 [9] 梁志伟. 氮沉降和降雨变化对荒漠草原土壤有机碳及其稳定性的影响[D]. 呼和浩特:内蒙古农业大学,2022:1-6 [10] 赵天启. 放牧强度对荒漠草原土壤有机碳特征的影响及其机制[D]. 呼和浩特:内蒙古农业大学,2023:1-19 [11] 潘森,卜嘉玮,甘安琪,等. 放牧强度对高寒草地土壤微生物胞外酶化学计量的影响[J]. 草地学报,2023,31(6):1780-1787 [12] 张彬,赵天启,贺启珅,等. 放牧对短花针茅荒漠草原土壤团聚体组成及稳定性的影响[J]. 应用生态学报,2022,33(12):3263-3270 [13] 方倩,李菲. 基于Meta分析探索放牧对青藏高原高寒草地土壤理化性质的影响[J]. 青海草业,2022,31(2):43-47,22 [14] 罗天相,刘莎. 中度放牧干扰对草地生物多样性影响的思考[J]. 安徽农业科学,2007(21):6567-6568,6612 [15] 王海茹,张卫青,卢晓霞,等. 放牧强度对典型草原土壤团聚体机械稳定性的影响—以内蒙古阿巴嘎旗草原为例[J]. 干旱区资源与环境,2022,36(6):164-170 [16] 薛冉,郭雅婧,苗福泓,等. 短期放牧对高寒草甸土壤水稳性团聚体构成及稳定性的影响[J]. 水土保持通报,2014,34(3):82-86,91 [17] WANG J,ZHAO C,ZHAO L,et al. Effects of grazing on the allocation of mass of soil aggregates and aggregate-associated organic carbon in an alpine meadow[J]. Plos One,2020,15(6):e0234477 [18] ZHANG Q Y,SHAO M A,JIA X X,et al. Understory vegetation and drought effects on soil aggregate stability and aggregate-associated carbon on the Loess Plateau in China[J]. Soil Science Society of America Journal,2018,82 (1):106-114 [19] 贾丽英,陈清,张洛梓,等. 放牧和围封对内蒙古羊草草原土壤团聚体理化性质的影响[J]. 天津师范大学学报(自然科学版),2021,41(6):40-45 [20] STEFFENS M,KOLBL A,SCHORK E,et al. Distribution of soil organic matter between fractions and aggregate size classes in grazed semiarid steppe soil profiles[J]. Plant and Soil,2011(338):63-81 [21] 李林芝,马源,张小燕,等. 不同退化程度高寒草甸土壤团聚体及其有机碳分布特征[J]. 草地学报,2023,31(1):210-219 [22] SALOMé C,NUNAN N,POUTEAU V,et al. Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms[J]. Global Change Biology,2010,16(1):416-426 [23] JING F,CHEN X M,WEN X,et al. Biochar effects on soil chemical properties and mobilization of cadmium (Cd) and lead (Pb) in paddy soil[J]. Soil Use and Management,2019,36(2):320-327 [24] DE CARITAT P,COOPER M,WILFORD J. The pH of Australian soils:field results from a national survey[J]. Soil Research,2010,49(2):173-182 [25] 蒋志洋,龙林丽,程海燕,等. 覆土厚度对复垦土壤团聚体稳定及有机碳贡献率的影响[J]. 安徽农业科学,2023,51(7):68-72 [26] 陈秋捷,张楠楠,仲波,等. 若尔盖高寒草地退化沙化过程中土壤养分与团聚体结构的变化特征[J]. 生态科学,2019,38(4):13-20 [27] 王永琪,杜保军,张树振,等. 放牧对新疆天山山地草甸土壤团聚体和土壤呼吸潜力的影响[J]. 草地学报,2022,30(10):2729-2736 [28] 杨思维. 高寒草甸植物群落与土壤对短期放牧的响应研究[D]. 兰州:甘肃农业大学,2017:74-75 [29] MEIER I C,FINZI A C,PHILLIPS R P. Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools[J]. Soil Biology and Biochemistry,2017(106):119-128 [30] 谭文峰,许运,史志华,等. 胶结物质驱动的土壤团聚体形成过程与稳定机制[J]. 土壤学报,2023,60(5):1-14 [31] 区晓琳,陈志彪,姜超,等. 植被恢复对亚热带侵蚀红壤团聚体养分分布的影响[J]. 水土保持学报,2016,30(6):230-238 [32] 杨泽宇. 不同放牧强度对典型草原土壤团聚体稳定性的影响[D]. 呼和浩特:内蒙古大学,2021:42-44 [33] RUEDA M,REBOLLO S,RODRíGGUEZ M A. Habitat productivity influences root mass vertical distribution in grazed Mediterranean ecosystems[J]. Acta Oecologica,2010,36(4):377-382 [34] RODRÍGGUEZ M A,JAVIER A,GOMEZSAL A. Vertical distribution of below-ground biomass in intensively grazed mesic grasslands[J]. Journal of Vegetation Science,1996(7):137-142 [35] WANG S S,WANG Z Q,FAN B,et al. Litter inputs control the pattern of soil aggregate-associated organic carbon and enzyme activities in three typical subtropical forests[J]. Forests,2022,13(8):1210 [36] 宋日,刘利,马丽艳,等. 作物根系分泌物对土壤团聚体大小及其稳定性的影响[J]. 南京农业大学学报,2009,32(3):93-97 [37] AKSAKAL E L,ANGIN I,SARI S. A new approach for calculating aggregate stability:mean weight aggregate stability (MWAS)[J]. Catena,2022(194):104708 [38] THOMAZ E L. Effects of fire on the aggregate stability of clayey soils:A meta-analysis[J]. Earth-Science Reviews,2021(221):103802 [39] BUI E N,HENDERSON B L. C:N:P stoichiometry in Australian soils with respect to vegetation and environmental factors[J]. Plant and Soil,2013(373):553-568 [40] 黄悦. 典型黄绵土团聚体结构稳定性的变化与影响因素研究[D]. 西安:西北农林科技大学,2022:55-57 [41] 周沁苑,董全民,王芳草,等. 放牧方式对高寒草地瑞香狼毒根际土壤团聚体及有机碳特征的影响[J]. 生态环境学报,2023,32(4):660-667 [42] 谢锦升,杨玉盛,陈光水,等. 植被恢复对退化红壤团聚体稳定性及碳分布的影响[J]. 生态学报,2008(24):702-709 [43] 李娜,张一鹤,韩晓增,等. 长期不同植被覆盖对黑土团聚体内有机碳组分的影响[J]. 植物生态学报,2019(43):624-634 [44] 石艳香,迟凤琴,张久明,等. 不同施肥处理黑土中添加秸秆对土壤团聚体稳定性及有机碳贡献率的影响[J].土壤通报,2023,54(4):856-863 [45] 徐英德. 基于保护性农业的土壤固碳过程研究进展[J]. 中国生态农业学报(中英文),2022,30(4):658-670 |