[1] 张莉. 中国北方大尺度植被格局研究[D]. 北京:华北电力大学,2011,19-21 [2] 何倩芸,王小祎,罗概,等. 不同放牧模式下高原鼠兔洞口的空间分布格局变[J]. 兽类学报,2021,41(4):431-440 [3] 祁应莲,陈志,张慧武,等. 高原鼠兔种群密度与生境因子作用关系研究[J/OL]. 草业科学,http://kns.cnki.net/kcms/detail/62.1069.S.20240125.1100.003.html,2024-01-26/2024-02-27 [4] 许仲林,彭焕华,彭守璋. 物种分布模型的发展及评价方法[J]. 生态学报,2015,35(2):557-567 [5] 毕雅琼,张明旭,陈元,等. 基于Biomod2组合模型的中国野生芍药Paeonia lactiflora适宜生境分布[J]. 中国中药杂志,2022,47(2):376-384 [6] 刘涛,刘玉萍,吕婷,等. 基于Biomod2组合模型预测青藏高原特有属扇穗茅属物种的潜在分布[J]. 草地学报,2020,28(6):1650-1656 [7] THUILLER W. Biomod:optimizing predictions of species distributions and projecting potential future shifts under global change[J]. Global Change Biology,2003(32):369-373 [8] 杨颖伦. 基于MaxEnt模型的滇藏玉兰适生区分布预测研究[J]. 现代农业科技,2024(3):98-102 [9] FIELDING A H, BELL J F. A review of methods for the assessment of prediction errorsin conservation presence/ absence models[J]. Environmental Conservation,1997,24(1):38-49 [10] AGUIRRE-GUTIERREZ J,CARVALHEIRO L G,POLCE C,et al. Fit-for purpose:Species distribution model performance depends on evaluation criteria:Dutch Hover flies as a case study[J]. Plos One,2013,8(5):e63708 [11] 高明龙. 基于Biomod2组合模型的我国山杨潜在分布区研究[J/OL]. 南京林业大学学报(自然科学版),http://kns.cnki.net/kcms/detail/32.1161.S.20230313.0929.002.html,2023-03-13/2023-12-20 [12] 曹晓云,周秉荣,周华坤,等. 气候变化对青藏高原植被生态系统的影响研究进展[J]. 干旱气象,2022,40(6):1068-1080 [13] 孙鸿烈,郑度,姚檀栋,等. 青藏高原国家生态安全屏障保护与建设[J]. 地理学报,2012,67(1):3-12 [14] 王英成. 三江源区退化高寒草甸土壤微生物多样性及空间变化规律研究[D]. 西宁:青海大学,2021:23-24 [15] YU C Q,ZHANG Y J,CLAUS H,et al. Ecological and environmental issues faced by a developing Tibet[J]. Environmental Science & Technology,2012,46:1979-1980 [16] 高艳美,吴鹏飞. 高寒草甸退化对土壤昆虫多样性的影响[J]. 生态学报,2016,36(8):2327-2336 [17] 花蕊,周睿,包达尔罕,等. 基于旋翼无人机低空遥感的高原鼠兔危害等级划分技术研究[J]. 草业学报,2022,31(4):165-176 [18] 庞晓攀. 高寒草甸植物生产力与土壤主要养分对高原鼠兔干扰响应的研究[D].兰州:兰州大学,2020:67-68 [19] 卫万荣. 高原鼠兔和高原鼢鼠种群消长规律及其与植被关系的研究[D]. 兰州:兰州大学,2018:40-41 [20] 楚彬,包达尔罕,叶国辉,等. 青藏高原东缘高原鼢鼠(Eospalax baileyi)生境适宜性研究[J]. 中国草地学报,2023,45(8):100-108 [21] FICK S E,HIJMANS R J. World Clim 2:New 1 km spatial resolution climate surfaces for global land areas. International Journal of Climatology,2017,37:4302-4315 [22] 刘炳莲,苗润泽,陈旭升,等. 基于组合模型预测吉林东部山区原麝的适宜分布区[J]. 四川动物,2023,42(2):121-130 [23] NELDER J A,WEDDERBURN R W M. Generalized Linea Models[J]. Journal of the Royal Statistical Society,1972,135(3):370-384 [24] HASTIE T,TIBSHIRANI R. Generalized Additive Models[J]. Statistical Science,1986,1(3):297-310 [25] BUSBY J R. BIOCLIM:a bioclimate analysis and prediction system[J]. Plant Protection Quarterly,1991,6(4):115-131 [26] FRIEDMAN J H. Multivariate adaptive regression splines[J]. The Annals of Statistics,1991,19(1):1-67 [27] HASTIE T,BUJA T A. Flexible Discriminant Analysis by Optimal Scoring[J]. Journal of the American Statistical Association,1994,89(428):1255-1270 [28] BREIMAN L,FRIEDMAN J H,OLSHEN R A,et al. Classification and Regression Trees[M]. New York:Chapman and Hall,1984,103-105 [29] RIDGEWAY G. The state of boosting[J]. Computing Science and Statistics,1999,31:172-181 [30] FRIEDNAN J,HASTIE T,TIBSHIRANI R. Additive logistic regression:a statistical view of boosting (With discussion and are joinder by the authors) [J]. The Annalsof Statistics,2000,28(2):337-407 [31] RIPLEY B D. Pattern Recognition and Neural Networks[M]. Cambridge:Cambridge University Press,2007:1-15 [32] BREIMAN L. Random Forests[J]. Machine Learning,2001,45(1):5-32 [33] 徐凯,张会妨. 基于RFE-BXGBoost的轴承套圈沟道表面缺陷识别方法[J]. 机电工程,2023,40(11):1691-1699 [34] 花蕊,周睿,包达尔罕,等. 玛曲县高原鼠兔地理分布预测及其对气候变化的潜在响应[J]. 草原与草坪,2020,40(3):1-8 [35] 吴艺楠,马育军,刘文玲,等. 基于BIOMOD的青海湖流域高原鼠兔分布模拟[J]. 动物学杂志,2017,52(3): 390-402 [36] 杜嘉星,孙义,向波,等. 基于BIOMOD的黄河源区高原鼠兔潜在分布及其影响因子[J]. 草业科学,2019,36(4):1074-1083,917 [37] TIANQI C, CARLOS G. XGBoost: A Scalable Tree Boosting System[J]. CoRR,2016,16(3):4681-4690 [38] 邓威,梅玉杰,李勇,等. 基于BOXGBoost的配变日峰值负荷预测及重过载预警方法[J/OL]. 电力系统及其自动化学报, https://doi.org/10.19635/j.cnki.csu-epsa.001295,2023-07-03/2023-12-16 [39] 郭新磊,宜树华,秦彧,等. 基于无人机的青藏高原鼠兔潜在栖息地环境初步研究[J]. 草业科学,2017,34(6): 1306-1313 [40] 张卫国,丁连生,韩天虎. 降水对高原鼠兔种群消长的影响[J]. 草业科学,1999,(6):20-22,25 [41] 宋文杰,张海兰,洛藏昂毛,等. 多年鼠类防控对高原鼠兔种群数量及植物群落结构的影响[J]. 草地学报,2023,31(9):2853-2859 [42] ZHOU R, HUA R, TANG Z S, et al. Daily and Seasonal Activity Patterns of Plateau Pikas (Ochotona curzoniae) on the Qinghai-Tibet Plateau, China, and Their Relationship with Weather Condition[J]. Animals, 2023,13(10): 1689-1701 [43] 宜树华,曹文达,张建国,等. 气候变化和人类活动背景下高原鼠兔动态分布预估研究进展[J]. 南通大学学报(自然科学版),2020,19(4):16-30 [44] 马兰,格日力. 高原鼠兔低氧适应分子机制的研究进展[J]. 生理科学进展,2007(2):143-146 [45] 葛庆征. 极端降水对高原鼠兔(Ochotona curzoniae)种群动态的影响[D]. 兰州:兰州大学,2013:147-148 [46] 马波,王小明,刘晓庆,等. 高原鼠兔洞穴数量与其栖息地植被分布格局的GIS分析[J]. 生物多样性,2011, 19(1):71-78 [47] WAN D, SUN R, WANG Z, et al. Effects of temperature and photoperiod on thermogenesis in plateau pikas (Ochotona curzoniae) and root voles (Microtus oeconomus)[J]. Journal of comparative physiology,1999,169 (1):77-83 [48] 赵健赟. 基于BIOMOD2集成模型的黄河源高原鼠兔潜在分布与干扰强度分析[J/OL]. 生态学杂志,http://kns.cnki.net/kcms/detail/21.1148.Q.20230830.1848.002.html,2023-08-21/2023-11-08 |