[1] GAO X X,DONG S K,LI S,et al. Using the random forest model and validated MODIS with the field spectrometer measurement promote the accuracyof estimating aboveground biomass and coverage of alpine grasslands on the Qinghai-Tibetan Plateau[J]. Ecological Indicators,2019,112(C):106114-106114 [2] DAWEI X,CONG W,JIN C,et al. The superiority of the normalized difference phenology index (NDPI) for estimating grassland aboveground fresh biomass[J]. Remote Sensing of Environment,2021,264:112578 [3] HERTEL D,THERBURG A,VILLALBA R. Above- and below-ground response by Nothofagus pumilio to climatic conditions at the transition from the steppe-forest boundary to the alpine treeline in southern Patagonia,Argentina[J]. Plant Ecology Diversity,2008,1(1):21-33 [4] HANSEN P,SCHJOERRING J. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression[J]. Remote Sensing of Environment,2003,86(4):542-553 [5] MUTANGA O,SKIDMORE K A. Narrow band vegetation indices overcome the saturation problem in biomass estimation[J]. International Journal of Remote Sensing,2004,25(19):3999-4014 [6] LIANG T,YANG S,FENG Q,et al. Multi-factor modeling of above-ground biomass in alpine grassland:A case study in the Three-River Headwaters Region,China[J]. Remote Sensing of Environment,2016,186:164-172 [7] FILELLA I,PEÑUELAS J,LLORENS L,et al. Reflectance assessment of seasonal and annual changes in biomass and CO2uptake of a Mediterranean shrubland submitted to experimental warming and drought[J]. Remote Sensing of Environment,2004,90(3):308-318 [8] XIE J,WANG C,MA D,et al. Generating spatiotemporally continuous grassland aboveground biomass on the Tibetan Plateau through PROSAIL model inversion on Google Earth Engine [J]. IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-10 [9] LYU X,LI X,GONG J,et al. Comprehensive grassland degradation monitoring by remote sensing in Xilinhot,Inner Mongolia,China[J]. Sustainability,2020,12(9):3682 [10] 闫敏,左合君,张晔,等.锡林浩特草原大针茅返青特征及其与气象因子的关系[J].生态环境学报,2019,28(7):1307-1312 [11] 刘昌华,方征,陈志超,等.ASD Field Spec3野外便携式高光谱仪诊断冬小麦氮营养[J].农业工程学报,2018,34(19):162-169 [12] 高宏元,侯蒙京,葛静,等.基于随机森林的高寒草地地上生物量高光谱估算[J].草地学报,2021,29(8):1757-1768 [13] 张勇.基于高光谱数据的草甸草原遥感估产研究[D].呼和浩特:内蒙古大学,2022:44-46 [14] 李燕强.不同冬小麦品种冠层光谱特征及其与农学参数关系研究[D].郑州:河南农业大学,2012:15-18 [15] 孙鹏.三江源区不同退化梯度高寒草原植被高光谱特征研究[D].兰州:甘肃农业大学,2018:33-35 [16] 杜保佳.基于无人机高光谱影像的湿地植物群落分类与冠层氮素含量反演研究[D].北京:中国科学院大学(中国科学院东北地理与农业生态研究所),2021:39-40 [17] 易秋香.玉米主要生物物理和生物化学参数高光谱遥感估算模型研究[D].乌鲁木齐:新疆农业大学,2005:29-30 [18] 孔嘉鑫,张昭臣,张健.基于多源遥感数据的植物物种分类与识别:研究进展与展望[J].生物多样性,2019,27(7):796-812 [19] KIRRILLY P,RENEE B,TIMOTHY W,et al. Multi-temporal spectral reflectance of tropical savanna understorey species and implications for hyperspectral remote sensing[J]. International Journal of Applied Earth Observation and Geoinformation,2022,112:102870 [20] 陈程,杜健民,杨红艳.内蒙古荒漠化草原植被高光谱特征提取与分析[J].光学仪器,2018,40(6):42-7 [21] 高莎,林峻,马涛,等.新疆巴音布鲁克草原马先蒿光谱特征提取与分析[J].遥感技术与应用,2018,33(5):908-14 [22] 刘琦.小麦条锈病潜育期遥感监测及分子检测技术研究[D].北京:中国农业大学,2016:31-32 [23] 李岚涛.冬油菜氮素营养高光谱特异性及定量诊断模型构建与推荐追肥研究[D].武汉:华中农业大学,2018:64-71 [24] 谢凯.基于高光谱遥感的水稻稻瘟病分级检测技术[D].长沙:湖南农业大学,2017:20-22 [25] 罗红霞,阚应波,王玲玲,等.基于高光谱遥感技术的农作物病虫害应用研究现状[J].广东农业科学,2012,39(18):76-80 [26] 管立新.农作物监测高光谱遥感技术研究[D].深圳:深圳大学,2018:28-30 [27] GUSTAVO A T,ARKO L,RICHARD R,et al. Perennial ryegrass biomass retrieval through multispectral UAV data[J]. Computers and Electronics in Agriculture,2022,193:106574 [28] YANG L,HAIKUAN F,JIBO Y,et al. Estimation of aboveground biomass of potatoes based on characteristic variables extracted from UAV Hyperspectral Imagery [J]. Remote Sensing,2022,14(20):5121 [29] 杨哲海,韩建峰,宫大鹏,等.高光谱遥感技术的发展与应用[J].海洋测绘,2003(6):55-58 [30] 王福民,黄敬峰,王秀珍,等.波段位置和宽度对不同生育期水稻NDVI影响研究[J]. 遥感学报,2008(4):626-632 [31] 金梁,胡克林,田明明,等.夏玉米叶片分层氮素营养的高光谱诊断[J].光谱学与光谱分析,2013,33(4):1032-1037 [32] 张乐勤,陈素平.基于偏最小二乘通径分析方法的科技创新对用水效率边际效应的测度与分析[J].水利水电科技进展,2018,38(1):55-62 [33] 白丽敏,李粉玲,常庆瑞,等.结合SPA和PLS法提高冬小麦冠层全氮高光谱估算的精确度[J]. 植物营养与肥料学报,2018,24(5):1178-1184 [34] 罗批,郭继昌,李锵,等.基于偏最小二乘回归建模的探讨[J].天津大学学报,2002(6):783-786 [35] 王宏博,赵梓淇,林毅,等.基于线性回归算法的春玉米叶面积指数的冠层高光谱反演研究[J].光谱学与光谱分析,2017,37(5):1489-1496 [36] 唐延林,王人潮,黄敬峰,等.不同供氮水平下水稻高光谱及其红边特征研究[J].遥感学报,2004(2):185-192 [37] MAHLEIN A,STEINER U,DEHNE H,et al. Spectral signatures of sugar beet leaves for the detection and differentiation of diseases[J]. Precision Agriculture,2010,11(4):413-431 [38] HAIKUAN F,HUILIN T,YIGUANG F,et al. Comparison of winter wheat Yield Estimation based on Near-Surface Hyperspectral and UAV Hyperspectral Remote Sensing Data[J]. Remote Sensing,2022,14(17):4158-4158 [39] 王秀梅.内蒙古典型草原植被地上生物量遥感反演[D].呼和浩特:内蒙古大学,2022:78-80 [40] 童新,杨震雷,张亦然,等.基于不同阶微分高光谱植被指数的牧区草场地上生物量估算[J].草地学报,2022,30(9):2438-2448 [41] 文铜,柳小妮,纪童,等.基于植被指数的三江源高寒草地植物分类与识别方法研究[J].草地学报,2022,30(7):1811-1818 |