[1] POSCHENRIEDER C, GUNSÉ B,CORRALES I,et al. A glance into aluminum toxicity and resistance in plants[J]. Science of the Total Environment,2008,400(1-3):356-368 [2] HORST W J,WANG Y X,ETICHA D. The role of the root apoplast in aluminium induced inhibition of root elongation and in aluminium resistance of plants:a review[J]. Annals of Botany,2010,106(1):185-197 [3] 张冉,韩博,任健,等.铝对植物毒害及草本植物耐铝毒机制研究进展[J].云南农业大学学报(自然科学),2020,35(2):353-360 [4] HUANG W J,YANG X D,YAO S C,et al. Reactive oxygen species burst induced by aluminum stress triggers mitochondria-dependent programmed cell death in peanut root tip cells[J]. Plant Physiology and Biochemistry,2014,82:76-84 [5] 姜娜,任健,罗富成,等.铝胁迫对不同耐铝基因型紫花苜蓿根尖及细胞壁氧化酶活性的影响[J].中国草地学报,2020,42(6):15-22 [6] YAN L,RIAZ M,LIU J Y,et al. Boron reduces aluminum deposition in alkali-soluble pectin and cytoplasm to release aluminum toxicity[J]. Journal of Hazardous Materials,2021,401:123388 [7] 孙文君,唐敏,任健,等. 8份云南苜蓿属优异种质资源对铝胁迫的生理耐受响应研究[J].草地学报,2018,26(5):1190-1197 [8] RIAZ M,YAN L,WU X W,et al. Boron increases root elongation by reducing aluminum induced disorganized distribution of HG epitopes and alterations in subcellular cell wall structure of trifoliate orange roots[J]. Ecotoxicology and Environmental Safety,2018, 165:202-210 [9] 缪野,刘怀锦,刘莉婷,等.柱花草SgALMT1基因克隆与表达分析[J].草地学报,2024,32(4):1078-1086 [10] KOCHIAN L V,PINEROS M A,LIU J P,et al. Plant adaptation to acid soils:the molecular basis for crop aluminum resistance[J]. Annual Review of Plant Biology,2015,66(1):571-598 [11] 邓晓霞,李月明,姚堃姝,等.植物适应酸铝胁迫机理的研究进展[J].生物工程学报,2022,38(8):2754-2766 [12] SHARMA P,DUBEY R S. Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum[J]. Plant Cell Reports,2007,26(11):2027-2038 [13] YANG J L,ZHU X F,ZHENG C,et al. Genotypic differences in Al resistance and the role of cell-wall pectin in Al exclusion from the root apex in Fagopyrum tataricum[J]. Annales of Botany,2011,107:371-378 [14] GENG X,HORST W,GOLZ J,et al. LEUNIG_HOMOLOG transcriptional corepressor mediates aluminium sensitivity through pectin methylesterase 46-modulated root cell wall pectin methylesterifcation in Arabidopsis[J]. The Plant Journal,2017,90:491-504 [15] ZHAO L J,CUI J J,CAI Y Y,et al. Comparative transcriptome analysis of two contrasting soybean varieties in response to aluminum toxicity[J]. International Journal of Molecular Sciences,2020,21:4316 [16] BHATTACHARJEE B,ALI A,TUTEJA N,et al. Identifcation and expression pattern of aluminium-responsive genes in roots of rice genotype with reference to Al-sensitivity[J]. Scientific Reports,2023,13:12184 [17] MIAO Y,HU X,WANG L,et al. Characterization of SgALMT genes reveals the function of SgALMT2 in conferring aluminum tolerance in Stylosanthes guianensis through the mediation of malate exudation[J]. Plant Physiology and Biochemistry,2024,208:108535 [18] ZHU X F,WAN J X,SUN Y,et al. Xyloglucan endotransglucosylase-hydrolase 17 interacts with xyloglucan endotransglucosylase-hydrolase31 to confer xyloglucan endotransglucosylase action and affect aluminum sensitivity in Arabidopsis[J]. Plant Physiology,2014,165:1566-1574 [19] CHE J,YAMAJI N,SHEN R F,et al. An Al-inducible expansin gene, OsEXPA10 is involved in root cell elongation of rice[J]. The Plant Journal,2016,88:132-142 [20] LIU W,FENG X,CHEN Z. Transient silencing of an expansin HvEXPA1 inhibits root cell elongation and reduces Al accumulation in root cell wall of Tibetan wild barley[J]. Environmental and Experimental Botany,2019,165:120-128 [21] 席嘉宾,陈平,张惠霞,等.中国地毯草野生种质资源耐旱性变异的初步研究[J].草业学报,2006,(3):93-99 [22] 廖丽,陈玉华,赵亚荣,等.地毯草种质资源形态多样性[J].草业科学,2015,32(2):248-257 [23] 刘洋,廖丽,阙勇,等.地毯草种质资源耐铝性评价[J].热带作物学报,2017,38(4):602-610 [24] 张静,廖丽,白昌军,等.地毯草耐铝性初步评价[J].草业科学,2012,29(11):1671-1677 [25] 李季肤,韩佳芮,贾怡丹,等.地毯草铝响应基因AcABCG1的克隆与表达分析[J].草地学报,2019,27(5):1147-1153 [26] 张郎织,李季肤,黄杰,等.地毯草AcMATE1基因的克隆与表达分析[J].热带作物学报,2021,42(7):1860-1867 [27] DE CASTRO L M R,VINSON C C,GORDO S M C DA,et al. Molecular and physiological aspects of plant responses to aluminum:what do we know about cerrado plants[J]. Brazilian Journal of Botany,2022,45:545-562 [28] WANG L,WANG W,MIAO Y,et al. Development of transgenic composite Stylosanthes plants to study root growth regulated by a β-expansin gene, SgEXPB1,under phosphorus defciency[J]. Plant Cell Reports,2023,42:575-585 [29] SAMPEDRO J,COSGROVE D J. The expansin superfamily[J]. Genome Biology,2005,6(12):242 [30] SUN Y D,YUE Y H,LI X F,et al. Transcription factor VviWOX13C regulates fruit set by directly activating VviEXPA37/38/39 in grape (Vitis vinifera L.)[J]. Plant Cell Reports,2023,43(1):19 [31] METALI F,SALIM K A,BURSLEM D F. Evidence of foliar aluminium accumulation in local, regional and global datasets of wild plants[J]. New Phytologist,2012,193:637-649 [32] TAN J,WANG M L, SHI Z Y,et al. OsEXPA10 mediates the balance between growth and resistance to biotic stress in rice[J]. Plant Cell Reports,2018,37:993-1002 [33] LIU W M,XU L A,LIN H,et al. Two expansin genes, AtEXPA4 and AtEXPB5, are redundantly required for pollen tube growth and AtEXPA4 is involved in primary root elongation in Arabidopsis thaliana[J]. Genes,2021,12(2):249 [34] ABBASI A,MALEKPOUR M,SOBHANVERDI S. The Arabidopsis expansin gene (AtEXPA18) is capable to ameliorate drought stress tolerance in transgenic tobacco plants[J]. Molecular Biology Reports,2021,48:5913-5922 |