Acta Agrestia Sinica ›› 2020, Vol. 28 ›› Issue (5): 1203-1215.DOI: 10.11733/j.issn.1007-0435.2020.05.004
Previous Articles Next Articles
SUN Yun-ya, CHEN Jia, WANG Yue, CHENG Ji-nan, HAN Qing-qing, ZHAO Qi, LI Hui-ru, LI Hui-ping, HE Ao-lei, GOU Jing-yi, WU Yong-na, NIU Shu-qi, SUO Sheng-zhou, LI Jing, ZHANG Jin-lin
Received:
2020-02-06
Revised:
2020-04-14
Online:
2020-10-15
Published:
2020-09-19
孙韵雅, 陈佳, 王悦, 程济南, 韩庆庆, 赵祺, 李惠茹, 李慧萍, 何傲蕾, 缑晶毅, 吴永娜, 牛舒琪, 索升州, 李静, 张金林
通讯作者:
张金林
作者简介:
孙韵雅(1999-),大学本科,主要从事根际促生菌与植物抗逆性研究,E-mail:sunyy2017@lzu.edu.cn;陈佳(1996-),硕士研究生,主要从事根际促生菌与植物抗逆性研究,E-mail:jchen19@lzu.edu.cn。
基金资助:
CLC Number:
SUN Yun-ya, CHEN Jia, WANG Yue, CHENG Ji-nan, HAN Qing-qing, ZHAO Qi, LI Hui-ru, LI Hui-ping, HE Ao-lei, GOU Jing-yi, WU Yong-na, NIU Shu-qi, SUO Sheng-zhou, LI Jing, ZHANG Jin-lin. Advances in Growth Promotion Mechanisms of PGPRs and Their Effects on Improving Plant Stress Tolerance[J]. Acta Agrestia Sinica, 2020, 28(5): 1203-1215.
孙韵雅, 陈佳, 王悦, 程济南, 韩庆庆, 赵祺, 李惠茹, 李慧萍, 何傲蕾, 缑晶毅, 吴永娜, 牛舒琪, 索升州, 李静, 张金林. 根际促生菌促生机理及其增强植物抗逆性研究进展[J]. 草地学报, 2020, 28(5): 1203-1215.
[1] 王博,徐志宇,王楷,等. 1961-2015年各国化肥消费量与人均GDP相关性分析[J]. 农业资源与环境学报,2019,36(6):718-727 [2] Chen X P,Cui Z L,Vitousek P M,et al. Integrated soil-crop system management for food security[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(16):6399-6404 [3] 程国强,汪苏. 中国粮食安全真问题[J]. 中国改革,2015,(3):32-36 [4] 缑晶毅,索升州,姚丹,等. 微生物肥料研究进展及其在农业生产中的应用[J]. 安徽农业科学,2019,47(11):13-17 [5] Raaijmakers J M,Mazzola M. Ecology Soil immune responses[J]. Science,2016,352(6292):1392-1393 [6] Bakker P A H M,Pieterse C M J,de Jonge R,et al. The soil-borne legacy[J]. Cell,2018,172(6):1178-1180 [7] Bhattacharyya P N,Jha D K. Plant growth-promoting rhizobacteria (PGPR):emergence in agriculture[J]. World Journal of Microbiology Biotechnology,2012,28(4):1327-1350 [8] Vejan P,Abdullah R,Khadiran T,et al. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review[J]. Molecules,2016,21(5):573 [9] Backer R,Rokem J S,Ilangumaran G,et al. Plant Growth-Promoting Rhizobacteria:Context,Mechanisms of Action,and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture[J]. Frontiers in plant science,2018,9:1473 [10] Raymond J,SiefertJ L,Staples C R,et al. The natural history of nitrogen fixation[J]. Molecular biology and evolution,2004,21(3):541-554 [11] 张武,杨琳,王紫娟. 生物固氮的研究进展及发展趋势[J]. 云南农业大学学报,2015,30(5):810-821 [12] Ahemad M,Khan M S. Alleviation of fungicide-induced phytotoxicity in green gram[Vigna radiata (L.) Wilczek] using fungicide-tolerant and plant growth promoting Pseudomonas strain[J]. Saudi Journal of Biological Sciences,2012,19(4):451-459 [13] Giordano W,Hirsch A M. The expression of MaEXP1,a Melilotus alba expansin gene,is upregulated during the sweet clover-Sinorhizobium meliloti interaction[J]. Molecular Plant-Microbe Interactions,2004,17(6):613-622 [14] Glick B R. Plant Growth-promoting bacteria:mechanisms and applications[J]. Scientifica,2012,2012(5):1-15 [15] Mishra P K,Mishra S,Selvakumarb G,et al. Enhanced soybean (Glycine max L.) plant growth and nodulation by Bradyrhizobium japonicum-SB1 in presence of Bacillus thuringiensis-KR1[J]. Acta Agriculturae Scandinavica Section B-Soil and Plant Science,2009,59(2):189-196 [16] 马文彬,姚拓,荣良燕,等. 无外源氮素条件下接种促生菌对箭筈豌豆生长及根系特性影响[J]. 草地学报,2015,23(3):496-501 [17] Giller K E,Cadisch G. Future benefits from biological nitrogen fixation:an ecological approach to agriculture[J]. Plant and Soil,1995,174(1-2):255-277 [18] Ledgard S F. Transfer of fixed nitrogen from white clover to associated grasses in swards grazed by dairy cows,estimated using 15N methods[J]. Plant and Soil,1991,131(2):215-223 [19] Barney A G,Ponraj P,Amelie J,et al. Engineering transkingdom signaling in plants to control gene expression in rhizosphere bacteria[J]. Nature Communications,2019,10(1):3430 [20] Boddey R M,Oliveira O C D,Urquiaga S R,et al.Biological nitrogen fixation associated with sugarcane and rice:contribution and prospects for improvement[J]. Plant and Soil,1995,174(1-2):195-209 [21] Zhang J Y,Liu Y X,Zhang N,et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice[J]. Nature Biotechnology,2019,37:676-684 [22] 王孝林,王二涛. 根际微生物促进水稻氮利用的机制[J]. 植物学报,2019,54(3):1-3 [23] Stevenson F J,Cole M A. Cycles of soils:carbon,nitrogen,phosphorus,sulfur,micronutrients,2nd Edition[J]. Humus Chemistry Genesis Composition Reactions,1999,135(6):642 [24] Rodríguez H,Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion[J]. Biotechnology Advances,1999,17(4-5):319-339 [25] Zaidi A,Khan M S,Ahemad M,et al. Plant growth promotion by phosphate solubilizing bacteria[J]. Acta microbiologica et immunologica Hungarica,2009,56(3):263-284 [26] 李琦,姚拓,阿不满,等. 根际促生菌微胶囊剂研发及对苜蓿、燕麦促生效果评价[J]. 草地学报,2019,27(5):1392-1399 [27] 李建宏,李雪萍,李昌宁,等. 一株植物根际促生菌Gnyt1的特性研究及分类地位的确定[J]. 草业学报,2019,28(5):55-67 [28] Mohammadi K. Phosphorus solubilizing bacteria:occurrence,mechanisms and their role in crop production[J]. Resources and Environment,2012,2(1):80-85 [29] Ahemad M,Khan M S. Phosphate-solubilizing and plant-growth-promoting Pseudomonas aeruginosa PS1 improves green-gram performance in quizalafop-p-ethyl and clodinafop amended soil[J]. Archives of Environmental Contamination Toxicol,2010,58(2):361-372 [30] Ahemad M,Khan M S. Pseudomonas aeruginosa strain PS1 enhances growth parameters of greengram[Vigna radiata (L.) Wilczek] in insecticide-stressed soils[J]. Journal of Pest Science,2011,84(1):123-131 [31] Poonguzhali S,Madhaiyan M,Sa T. Isolation and identification of phosphate solubilizing bacteria from chinese cabbage and their effect on growth and phosphorus utilization of plants[J]. Journal of microbiology and biotechnology,2008,18(4):773-777 [32] Chen Z,Ma S,Liu L L. Studies on phosphorus solubilizing activity of a strain of phosphobacteria isolated from chestnut type soil in China[J]. Bioresource Technology,2008,99(14):6702-6707 [33] Zaidi A,Khan M S. Interactive effect of rhizospheric microorganisms on growth,yield and nutrient uptake of wheat[J]. Journal of plant Nutrition,2005,28(12):2079-2092 [34] Vikram A,Hamzehzarghani H. Effect of phosphate solubilizing bacteria on nodulation and growth parameters of greengram (Vigna radiate L. Wilczec)[J]. Research Journal of Microbiology,2008,3(2):62-72 [35] Zaidi S,Usmani S,Singh B R,et al. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea[J]. Chemosphere,2006,64(6):991-997 [36] Hameeda B,Harini G,Rupela O P,et al. Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna[J]. Microbiological Research,2008,163(2):234-242 [37] Verma S C,Ladha J K,Tripathi A K. Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice[J]. Journal of Biotechnology,2001,91(2):127-141 [38] Kuklinsky-Sobral J,Araújo W L,Mendes R,et al. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion[J]. Environmental Microbiology,2004,6(12):1244-1251 [39] Suman A,Shasany A K,Singh M,et al. Molecular assessment of diversity among endophytic diazotrophs isolated from subtropical Indian sugarcane[J]. World Journal Microbiology Biotechnology,2001,17:39-45 [40] Ahmad F,Ahmad I,Khan M S. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities[J].Microbiological Research,2008,163(2):173-181 [41] 盛下放,黄为一. 硅酸盐细菌NBT菌株解钾机理初探[J]. 土壤学报,2002,39(6):863-871 [42] 林启美,饶正华,孙焱鑫,等. 硅酸盐细菌的筛选及其对番茄营养的影响[J]. 中国农业科学,2002,35(1):59-62 [43] 席琳乔,宋爱民,龚明福,等. 棉花根际硅酸盐细菌解钾机理的初步研究[J]. 西北农业学报,2009,18(3):309-314 [44] 刘五星,徐旭士,杨启银,等. 胶质芽孢杆菌对土壤矿物的分解作用及机理研究[J]. 土壤,2004,36(5):547-550 [45] Rajkumar M,Ae N,Prasad M N V,et al. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction[J]. Trends in Biotechnology,2010,28(3):142-149 [46] Neilands J B. Siderophores:structure and function of microbial iron transport compounds[J]. Journal of Biological Chemistry,1995,270(45):26723-26726 [47] Indiragandhi P,Anandham R,Madhaiyan M,et al. Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella(Lepidoptera:Plutellidae)[J]. Current microbiology,2008,56(4):327-333 [48] Freitas M A,Medeiros F H,Carvalho S P,et al. Augmenting iron accumulation in cassava by the beneficial soil bacterium Bacillus subtilis(GB03)[J]. Frontiers in Plant Science,2015,6:596 [49] Zhang H,Sun Y,Xie X,et al. A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms[J]. Plant Journal,2009,58(4):568-577 [50] Taghavi S,Garafola C,Monchy S,et al. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees[J]. Applied and Environment Microbiology,2009,75(3):748-57 [51] Tanimoto E. Regulation of root growth by plant hormones-roles for auxin and gibberellin[J]. Critical Reviews in Plant Sciences,2005,24(4):249-265 [52] 宋金秋,刘淑娇,崔丽红,等. 根际细菌溶磷、产IAA及其抑菌作用的研究[J]. 基因组学与应用生物学,2017,36(11):4722-4728 [53] Vessey J K. Plant growth promoting rhizobacteria as biofertilizers[J]. Plant and Soil,2003,255:571-586 [54] Spaepen S,Vanderleyden J. Auxin and plant-microbe interactions[J]. Cold Spring Harbor Perspectives in Biology,2011,3(4):704-704 [55] Asghar H N,Zahir Z A,Arshad M. Screening rhizobacteria for improving the growth,yield and soil content of canola (Brassica napus L.)[J]. Australian Journal of Agricultural Research,2004,55(2):187-194 [56] Sheng X F,Xia J J. Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria[J]. Chemosphere,2006,64(6):1036-1042 [57] Belimov A A,Hontzeas N,Safronova V I,et al. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.)[J]. Soil Biology& Biochemistry,2005,37(2):241-250 [58] Bent E,Tuzun S,Chanway C P,et al. Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria[J]. Canadian Journal of Microbiology,2001,47(9):793-800 [59] Salisbury F B. The role of plant hormones plant environment interactions[J]. The Role of Plant Hormones in Plant Environment Interactions,1994,39-81 [60] 贾小明. 微生物产生的细胞分裂素[J]. 微生物学通报,1996,23(4):230-235 [61] 罗超,黄世文,王菡,等. 细胞分裂素的生物合成、受体和信号转导的研究进展[J]. 特产研究,2011,33(2):71-75 [62] Noel T C,Sheng C,Yost C K,et al. Rhizobium leguminosarum as a plant growth-promoting rhizobacterium:direct growth promotion of canola and lettuce[J]. Canadian Journal of Microbiology,1996,42(3):279-283 [63] Timmusk S,Nicander B,Granhall U,et al. Cytokinin production by Paenibacillus polymyxa[J]. Soil Biology & Biochemistry,1999,31(13):1847-1852 [64] de Salamone G D,Hynes R K,Nelson LM. Cytokinin production by plant growth promoting rhizobacteria and selected mutants[J]. Canadian Journal of Microbiology,2001,47(5):404-411 [65] Arkhipova T N,Prinsen E,Veselov S U,et al. Cytokinin producing bacteria enhance plant growth in drying soil[J]. Plant and Soil,2007,292(1-2):305-315 [66] 李保珠,赵翔,安国勇. 赤霉素的研究进展[J]. 中国农学通报,2011,27(1):1-5 [67] Gutiérrez-Mañero F J,Ramos-Solano A B,Probanza A,et al. The plant growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins[J]. Physiologia Plantarum,2001,111(2):206-211 [68] 牛舒琪. 梭梭根际促生细菌调控黑麦草生长和抗逆性的生理研究[D]. 兰州:兰州大学,2017:22 [69] Khalid A,Akhtar M J,Mahmood M H,et al. Effect of substrate-dependent microbial ethylene production on plant growth[J]. Microbiology,2006,75(2):231-236 [70] Mayak S,Tirosh T,Glick B R. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress[J]. Plant Physiology and Biochemistry,2004,42(6):565-572 [71] Mastretta C,Barac T,Vangronsveld J,et al. Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments[J]. Biotechnology and Genetic Engineering Reviews,2006,23(1):175-188 [72] Arshad M,Saleem M,Hussain S. Perspectives of bacterial ACC deaminase in phytoremediation[J]. Trendsin Biotechnology,2007,25(8):356-362 [73] Nadeem S M,Zahir Z A,Arshad M,et al. Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields[J]. Canadian Journal of Microbiology,2009,55(11):1302-1309 [74] Zahir Z A,Munir A,Asghar H N,et al. Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of pea (Pisum sativum) under drought conditions[J]. Journal Microbiology & Biotechnology,2008,18(5):958-963 [75] Shaharoona B,Naveed M,Arshad M,et al. Fertilizer-dependent efficiency of Pseudomonads for improving growth,yield,and nutrient use efficiency of wheat (Triticum aestivum L.)[J]. Applied Microbiology & Biotechnology,2008,79(1):147-155 [76] Dell' Amico E,Cavalca L,Andreoni V. Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil,and screening of metal-resistant,potentially plant growth-promoting bacteria[J]. FEMS Microbiology Ecology,2005,52(2):153-162 [77] Ryu C M,Farag M A,Hu C H,et al. Bacterial volatiles promote growth in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(8):4927-4932 [78] Wu Y N,Feng Y L,Paul W P,et al. Beneficial soil microbe promotes seed germination,plant growth and photosynthesis in herbal crop Codonopsis pilosula[J]. Crop & Pasture Science,2016,67(1):91-98 [79] Thair H A S,Gu Q,Wu H J,et al. Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2[J]. Frontiers in Microbiology,2017,8(e48744):171 [80] Jiang Q,Xiao J,Zhou C H,et al. Complete genome sequence of the plant growth-promoting,rhizobacterium Pseudomonas aurantiaca strain JD37[J]. Journal of Biotechnology,2014,192:85-86 [81] Kong C H,Zhang S Z,Li Y H,et al. Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals[J]. Nature Communications,2018,9(1):3867 [82] Ryu C M. Bacterial Volatiles Induce Systemic Resistance in Arabidopsis[J]. Plant Physiology,2004,134(3):1017-1026 [83] Kwon Y S,Ryu C M,Lee S,et al. Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles[J]. Planta,2010,232(6):1355-1370 [84] 陈华,郑之明,余增亮. 枯草芽孢杆菌JA脂肽类及挥发性物质抑菌效应的研究[J]. 微生物通报,2008,35(1):1-4 [85] Flavio H V M,Ricardo M S,Fernanda C L M,et al.Transcriptional profiling in cotton associated with Bacillus subtilis (UFLA285) induced biotic-stress tolerance[J]. Plant and Soil,2011,347:327-337 [86] 戴梅,王洪娴,殷元元,等. 丛枝菌根真菌与根围促生细菌相互作用的效应与机制[J]. 生态学报,2008,28(6):2854-2860 [87] 黄秋斌,张颖,刘凤英,等. 蜡样芽孢杆菌B3-7在大田小麦根部的定殖动态及其对小麦纹枯病的防治效果[J]. 生态学报,2014,34(10):2559-2566 [88] Alstrom S. Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere pseudomonas[J]. Journal of General andApplied Microbiology,1991,37(6):495-501 [89] Kwak M J,Kong H G,Choi K Y,et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato[J]. Nature Biotechnology,2018,36:1100-1109 [90] Mina A,Ranjith K N,Xie X T,et al. Augmenting sulfur metabolism and herbivore defense in Arabidopsis by bacterial volatile signaling[J]. Frontiers in Plant Science,2016,7:458 [91] 韩岚岚,宋福平,张杰,等. 苏云金芽孢杆菌杀虫晶体蛋白对棉铃虫活性分析[J]. 东北农业大学学报,2008,39(8):21-24 [92] Wang W,Vinocur B,Altman A. Plant responses to drought,salinity and extreme temperatures:towards genetic engineering for stress tolerance[J]. Planta,2003,218(1):1-14 [93] 王国基,柴强,张玉霞,等. 干旱区玉米专用菌肥对玉米生长特性的影响[J]. 草地学报,2015,23(1):173-179 [94] Lim J H,Kim S D. Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper[J]. Plant Pathology Journal,2013,29(2):201-208 [95] Vurukonda S S,Vardharajula S,Shrivastava M,et al. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria[J]. Microbiological Research,2016,184:13-24 [96] Praveen K G,Mir S K,Desai S,et al. In vitro screening for abiotic stress tolerance inpotent biocontrol and plant growth promoting strains of Pseudomonas and Bacillus spp[J].International Journal of Bacteriology,2014,2014(11):195946 [97] Dimkpa C,Weinand T,Ash F. Plant-rhizobacteria interactions alleviate abiotic stress conditions[J].Plant Cell & Environment,2009,32(12):1682-1694 [98] Mantelin S,Touraine B. Plant growth-promoting bacteria and nitrate availability impacts on root development and nitrate uptake[J]. Journal of Experimental Botany,2004,55(394):27-34 [99] 刘方春,马海林,马丙,等. 干旱环境下接种根际促生细菌对核桃苗光合特性的影响[J]. 林业科学,2015,51(7):84-90 [100] Creus C M,Sueldo R J,Barassi C A. Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field[J]. Canadian Journal of Botany,2004,82(2):273-281 [101] Gontia-Mishra I,Sapre S,Sharma A,et al. Amelioration of drought tolerance in wheat by the interaction of plant growth-promoting rhizobacteria[J]. Plant Biology,2016,18(6):992-1000 [102] Bresson J,Varoquaux F,Bontpart T,et al. The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis[J]. New Phytologist,2013,200(2):558 [103] Cho S M,Kang B R,Han S H,et al. 2R,3R-Butanediol,a bacterial volatile produced by Pseudomonas chlororaphis O6,is involved in induction of systemic tolerance to drought in Arabidopsis thaliana[J]. MolecularPlant-Microbe Interactions,2008,21(8):1067-1075 [104] Mayak S,Tirosh T,Glick B R. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers[J]. Plant Science,2002,166(2):525-530 [105] Wang C J,Yang W,Wang C,et al. Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains[J]. PLOS One,2012,7(12):e52565 [106] Su A Y,Niu S Q,Liu Y Z,et al. Synergistic effects of Bacillus amyloliquefaciens (GB03) and water retaining agent on drought tolerance of perennial ryegrass[J]. International Journal of Molecular Science,2017,18(12):2651 [107] Franciska T de V,Rob I G,Christopher G K,et al. Harnessing rhizosphere microbiomes for drought-resilient crop production[J]. Science,2020,368:270-274 [108] Munns R,Gilliham M. Salinity tolerance of crops-what is the cost?[J]. New Phytologist,2015,208:668-673 [109] Qin Y D,Druzhinina I S,Pan X,et al. Microbially mediated plant salt tolerance andmicrobiome-based solutions for saline agriculture[J]. Biotechnology Advances,2016,34(7):1245-1259 [110] Grover M,Ali SZ,Sandhya V,et al. Role of microorganisms in adaptation of agriculture crops to abiotic stresses[J]. World Journal of Microbiology and Biotechnology,2011,27(5):1231-1240 [111] Han Q Q,Lü X P,Bai J P,et al. Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover[J]. Frontiers in Plant Science,2014,5:525 [112] Rojas-Tapias D,Moreno-Galvan A,Pardo-Diaz S,et al. Effect of inoculation with plant growth-promoting bacteria (PGPB)on amelioration of saline stress in maize (Zea mays)[J]. Applied Soil Ecology,2012,61:264-272 [113] Ashraf M,Hasnain S,Berge O,et al. Inoculating wheat seedlings with xopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growthunder salt stress[J]. Biology and Fertility of Soils,2004,40(3):157-162 [114] Cheng Z,Woody O Z,McConkey B J,et al. Combined effects of the plant growth-promoting bacterium Pseudomonas putida UW4 and salinity stress on the Brassica napus proteome[J].Applied Soil Ecology,2012,61:255-263 [115] Barassi C A,Ayrault G,Creus C M,et al. Seed inoculation with Azospirillum mitigates NaCl effects on lettuce[J]. Scientia Horticulturae,2006,109(1):8-14 [116] Zhang J L,Flowers T J,Wang S M. Mechanisms of sodium uptake by roots of higher plants[J].Plant and Soil,2010,326(1-2):45-60 [117] Niu S Q,Li H R,Paul W P,et al. Induced growth promotion and higher salt tolerance in the halophyte grass Puccinellia tenuiflora by beneficial rhizobacteria[J]. Plant and Soil,2016,407:217-230 [118] Han Q Q,Wu Y N,Gao H J,et al. Improved salt tolerance of medicinal plant Codonopsis pilosula by Bacillus amyloliquefaciens GB03[J]. Acta Physiologiae Plantarum,2017,39:35 [119] 韩庆庆,贾婷婷,吕昕培,等. 枯草芽孢杆菌GB03对紫花苜蓿耐盐性的影响[J]. 植物生理学报,2014,50(9):1423-1428 [120] Zhang J L,Aziz M,Qiao Y,et al. Soil microbe Bacillus subtilis (GB03) induces biomass accumulation and salt tolerance with lower sodium accumulation in wheat[J]. Crop & Pasture Science,2014,65(5):423-427 [121] Upadhyay S K,Singh D P. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment[J]. Plant Biology,2015,17(1):288-293 [122] Jennifer K,Caitlyn M N,Zachary T A,et al. Salt-tolerant halophyte rhizosphere bacteria stimulate growth of alfalfa in salty soil[J]. Frontiers in Microbiology,2019,10:01849 [123] He A L,Niu SQ,Zhao Q,et al. Induced salt tolerance of perennial ryegrass by a novel bacterium strain from the rhizosphere of a desert shrub Haloxylon ammodendron[J]. International Journal of Molecular Science,2018,19(2):469 [124] Vaishnav A,Kumari S,Jain S,et al. Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress[J]. Journal of Applied Microbiology,2015,119(2):539-551 [125] Ahmad M,Zahir Z A,Khalid M,et al. Efficacy of Rhizobium and Pseudomonas strains to improve physiology,ionic balance and quality of mung bean under salt-affected conditions on farmer's fields[J]. Plant Physiology and Biochemistry,2013,63:170-176 [126] Bhattacharyya D,Yu S M,Lee Y H. Volatile compounds from Alcaligenes faecalis JBCS1294 confer salt tolerance in Arabidopsis thaliana through the auxin and gibberellin pathways and differential modulation of gene expression in root and shoot tissues[J]. Plant Growth Regulation,2015,75(1):1-10 [127] Zvinavashe A T,Lim E,Sun H,et al. A bioinspired approach to engineer seed microenvironment to boost germination and mitigate soil salinity[J]. Proceedings of the National Academy of Sciences of the United States of America,2019,116(51):25555-25561 [128] Hamaoui B,Abbadi J,Burdman S,et al. Effects of inoculation with Azospirillum brasilense on chickpeas (Cicer arietinum) and faba beans (Vicia faba) under different growth conditions[J]. Agronomie,2001,21:553-560 [129] Hamdia M A E S,Shaddad M A K,Doaa M M. Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions[J]. Plant Growth Regulation,2004,44(2):165-174 [130] Saravanakumar D,Samiyappan R. ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants[J]. Journal of Applied Microbiology,2007,102(5):1283-1292 [131] Nadeem S M,Zahir Z A,Arshad M,et al. Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity[J]. Canadian Journal of Microbiology,2007,53(10):1141-1149 [132] Zhang H,Kim M S,Sun Y. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1[J]. Molecular Plant-Microbe Interactions,2008,21(7):737-744 [133] Dardanelli M S,Espuny M R,Okon Y,et al. Effect of Azospirillum brasilense coinoculated with rhizobium on Phaseolus vulgaris flavonoids and nod factor production under salt stress[J]. Soil Biology and Biochemistry,2008,40(11):2713-2721 [134] Kohler J,Hernández J A,Caravaca F,et al. Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to sever salt stress[J]. Environmental and Experimental Botany,2009,65(2):245-252 [135] Omar M N A,Osman M E H,Kasim W A,et al. Improvement of salt tolerance mechanism of barely cultivated under salt stress using Azospirillum brasilense[M]. Berlin:Springer verlag,2009:133-147 [136] Marulanda A,Azcón R,Chaumont F,et al. Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions[J]. Planta,2010,232(2):533-543 [137] Jha Y,Subramanian R B. Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline condition[J]. Chilean Journal of Agricultural Research,2013,73(3):213-219 [138] Mohamed E A,Mohamed A,Emad A A,et al. Piriformospora indica alters Na+/K+ homeostasis,antioxidant enzymes and LeNHX1 expression of greenhouse tomato grown under salt stress[J]. Scientia Horticulturae,2019,256:108532 [139] 江绪文,李贺勤,谭勇. 藿香内生细菌HX-2的鉴定、耐性及对宿主植物的促生作用[J]. 草业学报,2018,27(1):161-168 [140] 赵会会,方志刚,马睿,等. 耐镉根际促生菌的筛选及其对一年生黑麦草镉吸收积累的影响[J]. 草地学报,2017,25(3):554-560 [141] Duruibe J,Ogwuegbu M,Egwurugwu J. Heavy metal pollution and human biotoxic effects[J].International Journal of Physical Science,2007,2(5):112-118 [142] Abdullah M,Fasola M,Muhammad A,et al. Avian feathers as a non-destructivebio-monitoring tool of trace metals signatures:a case study from severely contaminated areas[J]. Chemosphere,2015,119:553-556 [143] 唐东民,伍钧,唐勇,等. 重金属胁迫对植物的毒害及其抗性机理研究进展[J]. 四川环境,2008,27(5):79-83 [144] 李洋,于丽杰,金晓霞. 植物重金属胁迫耐受机制[J]. 中国生物工程杂志,2015,35(9):94-104 [145] Jing Y,He Z,Yang X. Role of soil rhizobacteria in phytoremediation of heavy metal contaminatedsoils[J]. Journal of Zhejiang University-Science B,2007,8(3):192-207 [146] Marco P D,Pacheco C C,Figueiredo A R. Novel pollutant-resistant methylotrophic bacteria for use in bioremediation[J]. FEMS Microbiology Letters,2004,234(1):75-80 [147] Madhaiyan M,Poonguzhali S,Sa T. Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.)[J]. Chemosphere,2007,69(2):220-228 [148] Pishchik V N,Provorov N A,Vorobyov N I. Interactions between plants and associated bacteria in soils contaminated with heavy metals[J]. Microbiology,2009,78(6):785-793 [149] Guo J K,Chi J. Effect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multifloru and Glycine max in Cd-contaminated soil[J]. Plant and Soil,2014,375(1):205-214 [150] Kamran M A,Syed J H. Effect of plant growth-promoting rhizobacteria inoculation on cadmium (Cd) uptake by Eruca sativa[J]. Environmental Science and Pollution Research,2015,22(12):9275-9283 [151] Islam F,Yasmeen T,Riaz M,et al. Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants[J]. Ecotoxicology & Environmental Safety,2014,110:143-152 [152] Glick B R. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase[J]. FEMS Microbiology Letters,2005,251(1):11-21 [153] 杨榕,王敬敬,徐松,等. 溶磷真菌的筛选及耐盐特性分析[J].微生物学通报,2018,45(10):2142-2151 |
[1] | ZHANG Xin-fei, SHE Mu-zi, LI Han-yu, JING Song, JIANG Hui-na, GAO Hao, ZHU Yan-xiao, FU Juan-juan. Growth Promotion Mechanisms of flavobacterium succinicans and Their Physiological Regulation on the Growth and Stress Tolerance in Lolium perenne [J]. Acta Agrestia Sinica, 2021, 29(8): 1704-1711. |
[2] | FU Jing-yan, LIANG Lin-lin, ZHOU Min, LI Zhou. Effects of seeds soaking with γ-aminobutyric acid on germination and aluminium tolerance of white clover [J]. Acta Agrestia Sinica, 2020, 28(5): 1275-1284. |
[3] | CUI Hui-ting, SUN Xi-nuo, MA Cheng-ze, HU Qian-nan, SUN Yan. Advances in Applications of Metabolomics Technology in Stress Resistance of Forage and Turfgrass [J]. Acta Agrestia Sinica, 2020, 28(4): 873-880. |
[4] | WANG Wei-wei, WANG Yong-feng, ZHANG Shu-meng, WANG Zhu-lin, SUN Feng-li, ZHANG Chao, XI Ya-jun. Cloning and Expression Analysis of Switchgrass PvbZIP8 Gene [J]. Acta Agrestia Sinica, 2019, 27(3): 560-566. |
[5] | ZHANG Yan, ZHU Hui-sen, BAI Yong-chao, HUANG Zhi-chao, HU Jing, DONG Kuan-hu, LI Cun-fu. Study on Salt Tolerance of Three Local Kentucky Bluegrass Accessories [J]. Acta Agrestia Sinica, 2018, 26(5): 1215-1222. |
[6] | MU Zhi-xin, SHI Ying, ZHANG Li-jun, ZHOU Jian-ping. Introduction Of OsVTE Gene Enhanced Osmotic Stress Tolerance of Transgenic Chicory Plants [J]. Acta Agrestia Sinica, 2017, 25(4): 839-844. |
[7] | LI Fang, GAO Ping, DUAN Ting-yu. Response and Mechanism of Arbuscular Mycorrhizal Fungi to Abiotic Stress [J]. Acta Agrestia Sinica, 2016, 24(3): 491-500. |
[8] | FAN Bo, SUN Xin-bo, ZHANG Yin-bing, ZHANG Xue, YUAN Jian-bo, ZHANG Hai-lan, XIAO Wei-yang, HAN Lie-bao, XU Li-xin. Cloning and Expression Analysis of ZjCCS from Zoysia Japonica [J]. Acta Agrestia Sinica, 2016, 24(2): 447-452. |
[9] | LI Zhen-yi, LONG Rui-cai, ZHANG Tie-jun, YANG Qing-chuan, KANG Jun-mei. Cloning and Functional Analysis of MsHSP 17.7 Gene from Alfalfa [J]. Acta Agrestia Sinica, 2016, 24(1): 121-128. |
[10] | SHI Jin, LI Ren, WANG Jin-fang, WU Xin-xin, ZHANG Na, SUN Qian-qian, QI Yan, XING Yan-xia, ZHOU Chun-lei, ZHAO Bing, GUO Yang-dong. Cloning and Sequence Analysis of the Plasma Membrane Aquaporins Gene PvPIP1 in Switchgrass [J]. Acta Agrestia Sinica, 2014, 22(4): 840-846. |
[11] | JIANG Xiao-mei, YAN Hiao-dong, ZHANG Xin-quan, ZHANG-Yu, HUANG Lin-kai. Candidate Reference Gene Selection for Quantitative RT-PCR Normalization in Orchardgrass (Dactylis glomerata L.) Root Tissue [J]. Acta Agrestia Sinica, 2014, 22(4): 847-853. |
[12] | ZHANG Li-jun, CHENG Lin-mei, DU Jian-zhong, WANG Yi-xue, HAO Yao-shan, LI Gui-quan, SUN Yi. Cotton APX Gene Enhances Stress Tolerance of Cichorium intybus [J]. , 2012, 20(1): 152-158. |
[13] | LIU Gang, ZHAO Gui-qin, YANG Cheng-de, MAN Yuan-rong. Primary Study on Biotic Stress Tolerance of Oats in Tibetan Plateau [J]. , 2007, 15(6): 582-587. |
[14] | SHI Shang-li, LIU Jian-rong, ZHANG Bo, CAO Zhi-zhong. Stress-Tolerance Evaluation of Alfalfa Nodule Bacteria in the Cold and Drought Regions of Gansu Province [J]. , 2007, 15(1): 1-6. |
[15] | LU Shao-yun, PENG Xin-xiang, GUO Zhen-fei. Biotechnological Approaches to Improvement of Triploid Bermudagrass for Abiotic Stress Tolerance [J]. , 2006, 14(2): 196-197. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||