[1] LUAN S,KUDLA J,RODRIGUEZ-CONCEPCION M,et al. Calmodulins and calcineurin B-like proteins[J]. The Plant Cell,2002,14(suppl 1):S389-S400 [2] KUDLA J,BATISTIC O,HASHIMOTO K. Calcium Signals:The lead currency of plant information processing[J]. The Plant Cell,2012,22(3):541-563 [3] DEFALCO T A,BENDER K W,SNEDDEN W A. Breaking the code:Ca2+ sensors in plant signalling[J]. Biochemical Journal,2010,425(1):27-40 [4] GONG D,GUO Y,SCHUMAKER K S,et al. The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis[J]. Plant Physiology,2004,134(3):919-926 [5] HASHIMOTO K,KUDLA J. Calcium decoding mechanisms in plants[J]. Biochimie,2011,93(12):2054-2059 [6] BATISTIC O,KUDLA J. Plant calcineurin B-like proteins and their interacting protein kinases[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research,2009,1793(6):985-992 [7] ALBRECHT V. The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases[J]. The EMBO Journal,2001,20(5):1051-1063 [8] OHTA M,GUO Y,HALFTER U,et al. A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2[J]. The National Academy of Sciences of the USA,2003,100(20):11771-11776 [9] CHEN X,HUANG Q,ZHANG F,et al. ZmCIPK21,a maize CBL-interacting kinase,enhances salt stress tolerance in Arabidopsis thaliana[J]. International Journal of Molecular Sciences,2014,15(8):14819-14834 [10] SUN T,WANG Y,WANG M,et al. Identification and comprehensive analyses of the CBL and CIPK gene families in wheat (Triticum aestivum L.)[J]. BMC Plant Biology,2015,15(1):12870 [11] 李慧,路依萍,汪小凯,等. CBL互作蛋白激酶GmCIPK10增强大豆耐盐性[J]. 作物学报,2023,49(5):1272-1281 [12] HUANG C,DING S,ZHANG H,et al. CIPK7 is involved in cold response by interacting with CBL1 in Arabidopsis thaliana[J]. Plant Science,2011,181(1):57-64 [13] KIM K N,LEE J S,HAN H,et al. Isolation and characterization of a novel rice Ca2+-regulated protein kinase gene involved in responses to diverse signals including cold,light,cytokinins,sugars and salts[J]. Plant Mol Biol,2003,52(6):1191-1202 [14] DE LA TORRE F,GUTIERREZ-BELTRAN E,PAREJA-JAIME Y,et al. The tomato calcium sensor cbl10 and its interacting protein kinase cipk6 define a signaling pathway in plant immunity[J]. The Plant Cell,2013,25(7):2748-2764 [15] KURUSU T,HAMADA J,NOKAJIMA H,et al. Regulation of microbe-associated molecular pattern-induced hypersensitive cell death,phytoalexin production,and defense gene expression by calcineurin B-like protein-interacting protein kinases,OsCIPK14/15,in rice cultured cells[J]. Plant Physiology,2010,153(2):678-692 [16] RAO X,ZHANG X,LI R,et al. A calcium sensor-interacting protein kinase negatively regulates salt stress tolerance in rice (Oryza sativa)[J]. Functional Plant Biology,2011,38(6):441 [17] LEE G,CARROW R N,DUNCAN R R. Photosynthetic responses to salinity stress of halophytic seashore paspalum ecotypes[J]. Plant Science,2004,166(6):1417-1425 [18] 解新明,卢小良. 海雀稗种质资源的优良特性及其利用价值[J]. 华南农业大学学报,2004(S2):64-67 [19] 宗俊勤,高艳芝,陈静波,等. 淹水胁迫对4种暖季型草坪草光合特性的影响[J]. 热带作物学报,2021,42(1):130-139 [20] 刘一明,程凤枝,王齐,等. 四种暖季型草坪植物的盐胁迫反应及其耐盐阈值[J]. 草业学报,2009,18(3):192-199 [21] 吴雪莉,郭振飞,陈申秒,等. 海滨雀稗耐逆性研究进展[J]. 草地学报,2019,27(5):1117-1125 [22] ZHANG Y,SU J,DUAN S,et al. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes[J]. Plant Methods,2011,7(1):30 [23] CHEN J,GUO Z,FANG J,et al. Physiological responses of a centipedegrass mutant to chilling stress[J]. Agronomy Journal,2013,105(6):1814-1820 [24] ZHUO C,LIANG L,ZHAO Y,et al. A cold responsive ethylene responsive factor from Medicago falcata confers cold tolerance by up-regulation of polyamine turnover,antioxidant protection,and proline accumulation[J]. Plant,Cell & Environment,2018,41(9):2021-2032 [25] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976,1-2(72):248-254 [26] TANG R J,WANG C,LI K,et al. The CBL-CIPK calcium signaling network:Unified paradigm from 20 years of discoveries[J]. Trends in Plant Science,2020,25(6):604-617 [27] PANDEY G K,CHEONG Y H,KIM B G,et al. CIPK9:a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis[J]. Cell Research,2007,17(5):411-421 [28] 周三,韩军丽,赵可夫. 泌盐盐生植物研究进展[J]. 应用与环境生物学报,2001,7(5):496-501 [29] CHEN X,GU Z,FENG L I U,et al. Molecular analysis of rice CIPKs involved in both biotic and abiotic stress responses[J]. Rice Science,2011,18(1):1-9 [30] 贾会丽,王学敏,高涛,等. 转MsLEA4-4基因拟南芥株系的耐盐性分析[J]. 草地学报,2020,28(3):597-605 [31] 徐金龙,张文静,向凤宁. 植物盐胁迫诱导启动子及其顺式作用元件研究进展[J]. 植物生理学报,2021,57(4):759-766 [32] BATISTIC O,WAADT R,STEINHORST L,et al. CBL-mediated targeting of CIPKs facilitates the decoding of calcium signals emanating from distinct cellular stores[J]. The Plant Journal,2010,61(2):211-222 [33] WAADT R,SCHMIDT L K,LOHSE M,et al. Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexesin planta[J]. The Plant Journal,2008,56(3):505-516 [34] LU L,CHEN X,ZHU L,et al. NtCIPK9:a calcineurin B-like protein-interacting protein kinase from the halophyte Nitraria tangutorum,enhances Arabidopsis salt tolerance[J]. Frontiers in Plant Science,2020(11):11-12 [35] KANWAR P,SANYAL S K,MAHIWAL S,et al. CIPK9 targets VDAC3 and modulates oxidative stress responses in Arabidopsis[J]. The Plant Journal,2022,(109):241-260 [36] WANG N,TAO B,MAI J,et al. Kinase CIPK9 integrates glucose and abscisic acid signaling to regulate seed oil metabolism in rapeseed[J]. Plant Physiology,2023,191(3):1836-1856 [37] GARCÍA G,CLEMENTE-MORENO M J,DÍAZ-VIVANCOS P,et al. The apoplastic and symplastic antioxidant system in onion:Response to long-term salt stress[J]. Antioxidants,2020,9(1):67 [38] HERNÁNDEZ-HERNÁNDEZ H,JUÁREZ-MALDONADO A,BENAVIDES-MENDOZA A,et al. Chitosan-PVA and copper nanoparticles improve growth and overexpress the SOD and JA genes in tomato plants under salt stress[J]. Agronomy,2018,8(9):175 [39] NALIWAJSKI M,SKLODOWSKA M. The relationship between the antioxidant system and proline metabolism in the leaves of cucumber plants acclimated to salt stress[J]. Cells,2021,10(3):609 [40] QIU Q S,GUO Y,DIETRICH M A,et al. Regulation of SOS1,a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana,by SOS2 and SOS3[J]. The National Academy of Sciences of the USA,2002,99(12):8436-8441 [41] ZHU J. Regulation of ion homeostasis under salt stress[J]. Current Opinion in Plant Biology,2003,6:441-445 [42] LIU L,REN H,CHEN L,et al. A protein kinase,calcineurin B-like protein-interacting protein kinase 9,interacts with calcium sensor calcineurin B-like protein3 and regulates potassium homeostasis under low-potassium stress in Arabidopsis[J]. Plant Physiology,2013,161(1):266-277 [43] LARA A,RÓDENAS R,ANDRÉS Z,et al. Arabidopsis K+ transporter HAK5-mediated high-affinity root K+ uptake is regulated by protein kinases CIPK1 and CIPK9[J]. Journal of Experimental Botany,2020,71(16):5053-5060 [44] SINGH A,YADAV A K,KAUR K,et al. A protein phosphatase 2C,AP2C1,interacts with and negatively regulates the function of CIPK9 under potassium-deficient conditions in Arabidopsis[J]. Journal of Experimental Botany,2018,69(16):4003-4015 |