[1] MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. Climate change 2021:The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press[R]. New York:Cambridge University Press, 2021:287-322 [2] FRIEDLINGSTEIN P,O'SULLIVAN M,JONES M W,et al. Global carbon budget[J]. Earth System Science Data,2020,12(4):3269-3340 [3] WALKER W S,GORELIK S R,COOK-PATTON S C,et al. The global potential for increased storage of carbon on land[J]. Proceedings of the National Academy of Sciences,2022,119(23):e2111312119 [4] HOUGHTON R A. Balancing the global carbon budget[J]. Annual Review of Earth and Planetary Sciences,2007,35(1):313-347 [5] HAGEDORN F,GAVAZOV K,Alexander J M. Above- and belowground linkages shape responses of mountain vegetation to climate change[J]. Science,2019,365(6458):1119-1123 [6] BAI Y F,COTRUFO M F. Grassland soil carbon sequestration:Current understanding,challenges,and solutions[J]. Science,2022,377(6606):603-608 [7] FONS V D P. Biodiversity and ecosystem functioning in naturally assembled communities[J]. Biological Reviews,2019,94(4):1220-1245 [8] CHEN S P,WANG W T,XU W T,et al. Plant diversity enhances productivity and soil carbon storage[J]. Proceedings of the National Academy of Sciences,2018,115(16):4027-4032 [9] 何远政,黄文达,赵昕,等. 气候变化对植物多样性的影响研究综述[J]. 中国沙漠,2021,41(1):59-66 [10] 罗正明,刘晋仙,胡砚秋,等. 五台山不同退化程度亚高山草甸土壤微生物群落分类与功能多样性特征[J].环境科学,2023,44(5):2918-2927 [11] 李晓丽,徐满厚,万忠,等. 模拟增温对云顶山亚高山草甸水热因子及群落结构的影响[J]. 生态学报,2020,40(19):6885-6896 [12] 马丽,徐满厚,周华坤,等. 山西亚高山草甸植被生物量的地理空间分布[J]. 生态学杂志,2018,37(8):2244-2253 [13] 石福孙,吴宁,罗鹏. 川西北亚高山草甸植物群落结构及生物量对温度升高的响应[J]. 生态学报,2008,28(11):5286-5293 [14] PORNON A,BOUTIN M,LAMAZE T. Contribution of plant species to the high N retention capacity of a subalpine meadow undergoing elevated N deposition and warming[J]. Environmental Pollution,2019(245):235-242 [15] 欧阳青,任健,代微然,等. 短期增温对亚高山草甸生物量和土壤呼吸速率的影响[J]. 草原与草坪,2019,39(1):75-82 [16] 庞晓瑜,雷静品,王奥,等. 亚高山草甸植物群落对气候变化的响应[J]. 西北植物学报,2016,36(8):1678-1686 [17] 晁倩,温静,杨晓艳,等. 云顶山亚高山草甸植物物种多样性对模拟增温的响应[J]. 环境生态学,2019,1(4):34-40 [18] 李晓红,徐健程,肖宜安,等. 武功山亚高山草甸群落优势植物野古草和芒异速生长对气候变暖的响应[J]. 植物生态学报,2016,40(9):871-822 [19] LUO S Z,ZHANG J H ZHANG H F,et al. Warming stimulated soil respiration in a subalpine meadow in North China[J]. Wuhan University Journal of Natural Sciences,2023,28(1):77-87 [20] 姚世庭,芦光新,周华坤,等. 模拟增温对高寒草甸土壤性质的影响[J]. 草地学报,2021,29(S1):218-224 [21] 罗正明,赫磊,刘晋仙,等. 土壤真菌群落对五台山亚高山草甸退化的响应[J]. 环境科学,2022,43(6):3328-3337 [22] 章异平,江源,刘全儒,等. 放牧压力下五台山高山、亚高山草甸的退化特征[J]. 资源科学,2008,30(10):1555-1563 [23] 任天晨,陈军锋,刘楠. 山西省五台山地区近30年植被覆盖动态变化及影响因素[J]. 林业资源管理,2022(4):89-99 [24] 牛莉芹,程占红. 基于旅游开发影响的五台山植被景观特征分析[J]. 地理研究,2019,38(5):1162-1174 [25] WALKLEY A. A critical examination of a rapid method for determining organic carbon in soils-effect of variations in digestion conditions and of inorganic soil constituents[J]. Soil Science,1947(63):251-264 [26] LI K Y,ZHAO Y Y,YUAN X L,et al. Comparison of factors affecting soil nitrate nitrogen and ammonium nitrogen extraction[J]. Communications in Soil Science and Plant Analysis,2012,43(3):571-588 [27] 王婧,刘雄洲,金冠芳,等. 季节性不对称模拟增温对青藏高原高寒草甸群落特征的影响[J]. 草地学报,2022,30(11):3056-3062 [28] 姜风岩,位晓婷,康濒月,等. 模拟增温对高寒草甸植物物种多样性与初级生产力的影响[J]. 草地学报,2019,27(2):228-305 [29] 牛书丽,韩兴国,马克平,等. 全球变暖与陆地生态系统研究中的野外增温装置[J]. 植物生态学报,2007,31(2):262-271 [30] 尹正辉,陈新丰,拉多. 模拟增温和放牧对高寒草甸主要植物生态位及种间联结的影响[J]. 草地学报,2023,31(5):1302-1313 [31] GANJURJAV H,GORNISH E S,Hu G Z,et al. Temperature leads to annual changes of plant community composition in alpine grasslands on the Qinghai-Tibetan Plateau[J]. Environmental Monitoring and Assessment,2018,190(10):585 [32] KLEIN J A,HARTE J,ZHAO X Q. Decline in medicinal and forage species with warming is mediated by plant traits on the Tibetan Plateau[J]. Ecosystems,2008(11):775-789 [33] 郝爱华.青藏高原典型草地对气候变化的差异响应及其机理[D]. 北京:中国科学院大学,2021:207-211 [34] XUE X,PENG F,YOU Q G,et al. Belowground carbon responses to experimental warming regulated by soil moisture change in an alpine ecosystem of the Qinghai-Tibet Plateau[J]. Ecology and Evolution,2015,5(18):4063-4078 [35] GANJURJAV H,GAO Q Z,GORNISH E S,et al. Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai-Tibetan Plateau[J]. Agricultural and Forest Meteorology,2016(223):233-240 [36] QUAN Q,ZHANG F Y,MENG C,et al. Shifting biomass allocation determines community water use efficiency under climate warming[J]. Environmental Research Letters,2020,15(9):094041 [37] HAO A H,DUAN H C,WANG X F,et al. Different response of alpine meadow and alpine steppe to climatic and anthropogenic disturbance on the Qinghai-Tibetan Plateau[J]. Global Ecology and Conservation,2021(27):e01512 [38] LI L H,ZHANG Y L,LIU L S,et al. Spatiotemporal patterns of vegetation greenness change and associated climatic and anthropogenic drivers on the Tibetan Plateau during 2000-2015[J]. Remote Sensing,2018,10(10):1525 [39] MCCONNAUGHAY K D M,COLEMAN J S. Biomass allocation in plants:Ontogeny or optimality? A test along three resource gradients[J]. Ecology,1999,80(8):2581-2593 [40] PENG F,YOU Q G,XU M H,et al. Effects of experimental warming on soil respiration and its components in an alpine meadow in the permafrost region of the Qinghai-Tibet Plateau[J]. European Journal of Soil Science,2015(66):145-154 [41] WALKER T W N,KAISER C,STRASSER F,et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming[J]. Nature Climate Change,2018(10):885-889 |