Acta Agrestia Sinica ›› 2023, Vol. 31 ›› Issue (2): 410-417.DOI: 10.11733/j.issn.1007-0435.2023.02.013
ZHAO Xin-yu, TIAN Li-hua, ZHAO Xue-chun, CHEN Chao, GUI Wei-yang
Received:
2022-08-19
Revised:
2022-10-18
Published:
2023-02-28
赵心雨, 田丽华, 赵学春, 陈超, 桂维阳
通讯作者:
桂维阳,E-mail:wygui@gzu.edu.cn
作者简介:
赵心雨(1997-),女,汉族,陕西咸阳人,硕士研究生,主要从事草地微生态与植被修复研究,E-mail:1269987222@qq.com
基金资助:
CLC Number:
ZHAO Xin-yu, TIAN Li-hua, ZHAO Xue-chun, CHEN Chao, GUI Wei-yang. Responses of Arbuscular Mycorrhizal Fungi (AMF) in Litter Decomposition to the Simulated Grazing in Typical Steppe[J]. Acta Agrestia Sinica, 2023, 31(2): 410-417.
赵心雨, 田丽华, 赵学春, 陈超, 桂维阳. 模拟放牧采食对典型草原土壤中AM真菌分解枯落物的影响[J]. 草地学报, 2023, 31(2): 410-417.
[1] OSBURN E D,HOCH P J,LUCAS J M,et al. Evaluating the roles of microbial functional breadth and home-field advantage in leaf litter decomposition [J]. Functional Ecology,2022,36(5):1258-1267 [2] WANG L,LIU Y L,ZHU X C,et al. Effects of arbuscular mycorrhizal fungi on crop growth and soil N2O emissions in the legume system [J]. Agriculture Ecosystems & Environment,2021(322):107641 [3] YANG G,RYO M,ROY J,et al. Multiple anthropogenic pressures eliminate the effects of soil microbial diversity on ecosystem functions in experimental microcosms [J]. Nature Communications,2022,13(1):4260 [4] DUDINSZKY N,CABELLO M N,GRIMOLDI A A,et al. Role of Grazing Intensity on Shaping Arbuscular Mycorrhizal Fungi Communities in Patagonian Semiarid Steppes [J]. Rangeland Ecology & Management,2019,72(4):692-699 [5] ZHOU J,ZANG H D,LOEPPMANN S,et al. Arbuscular mycorrhiza enhances rhizodeposition and reduces the rhizosphere priming effect on the decomposition of soil organic matter [J]. Soil Biology & Biochemistry,2020(140):107641 [6] MEI L L,ZHANG P,CUI G W,et al. Arbuscular mycorrhizal fungi promote litter decomposition and alleviate nutrient limitations of soil microbes under warming and nitrogen application [J]. Applied Soil Ecology,2022(171):104318 [7] ZHOU J,ZANG H,LOEPPMANN S,et al. Arbuscular mycorrhiza enhances rhizodeposition and reduces the rhizosphere priming effect on the decomposition of soil organic matter [J]. Soil Biology & Biochemistry,2020(140):107641 [8] CHENG H G,WANG J Y,TU C L,et al. Arbuscular mycorrhizal fungi and biochar influence simazine decomposition and leaching [J]. Global Change Biology Bioenergy,2021,13(4):708-718 [9] JANNOURA R,KLEIKAMP B,DYCKMANS J,et al. Impact of pea growth and arbuscular mycorrhizal fungi on the decomposition of N-15-labeled maize residues [J]. Biology and Fertility of Soils,2012,48(5):547-560 [10] TANG K H D,LOCK S S M,YAP P S,et al. Immobilized enzyme/microorganism complexes for degradation of microplastics:A review of recent advances,feasibility and future prospects [J]. SciTotal Environ,2022(832):154868 [11] TURNER B L,HOPKINS D W,HAYGARTH P M,et al. beta-glucosidase activity in pasture soils [J]. Applied Soil Ecology,2002,20(2):157-162 [12] LI H Y,TIAN H X,LIU C Y,et al. The effect of arsenic on soil intracellular and potential extracellular beta-glucosidase differentiated by chloroform fumigation [J]. Science of The Total Environment,2020(727):138659 [13] WADE J,LI C Y,VOLLBRACHT K,et al. Prescribed pH for soil beta-glucosidase and phosphomonoesterase do not reflect pH optima [J]. Geoderma,2021(401):115161 [14] ZHAN X H,WU W Z,ZHOU L X,et al. Interactive effect of dissolved organic matter and phenanthrene on soil enzymatic activities [J]. Journal of Environmental Sciences,2010,22(4):607-614 [15] ARMADA E,LOPEZ-CASTILLO O,ROLDAN A,et al. Potential of mycorrhizal inocula to improve growth,nutrition and enzymatic activities in Retama sphaerocarpa compared with chemical fertilization under drought conditions [J]. Journal of Soil Science and Plant Nutrition,2016,16(2):380-399 [16] THOMAS H J D,MYERS-SMITH I H,BJORKMAN A D,et al. Traditional plant functional groups explain variation in economic but not size-related traits across the tundra biome [J]. Global Ecology and Biogeography,2019,28(2):78-95 [17] ZHU A,HAN G,KANG J,et al. Effects of Long-term Grazing on Characteristics of Plant Functional Groups in Stipa Breviflora Desert Steppe [J]. Acta Agrestia Sinica,2019,27(6):1459-1466 [18] LI W J,LUO S,WANG J F,et al. Nitrogen deposition magnifies destabilizing effects of plant functional group loss [J]. Science Total Environ,2022(835):155419 [19] 张振华,刘振杰,陈白洁,等.枯落物添加对三江源区退化高寒草甸土壤碳矿化的影响[J].草地学报,2021,29(S1):156-164 [20] GUI W Y,REN H Y,LIU N,et al. Plant functional group influences arbuscular mycorrhizal fungal abundance and hyphal contribution to soil CO2 efflux in temperate grasslands [J]. Plant Soil,2018,432(1-2):157-170 [21] LI Q M,BAI W M,GUO Y M,et al. The response of two nutrient acquisition strategies:root traits and leaf nutrient resorption and their relationships to long-term mowing in a temperate steppe [J]. Plant Soil,2022(7):05533 [22] SHENG J,ZHOU M,GUO Y M,et al. Aboveground productivity and community stability tend to keep stable under long-term fencing and nitrogen fertilization on restoration of degraded grassland [J]. Ecological Indicators,2022(140):108971 [23] ZUBEK S,KAPUSTA P,ROZEK K,et al. Fungal root colonization and arbuscular mycorrhizal fungi diversity in soils of grasslands with different mowing intensities [J]. Applied Soil Ecology,2022(172):104358 [24] PEARSON J N,SMITH S E,SMITH F A. Effect of photon irradiance on the development and activity of va mycorrhizal infection in allium-porrum [J]. Mycological Research,1991(95):741-746 [25] 费璇,锁才序,向双,等.青藏东缘高寒草甸植物群落结构及功能群特征对长期季节放牧的响应[J].草地学报,2022,30(8):1954-1963 [26] SHAHZAD T,CHENU C,GENET P,et al. Contribution of exudates,arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species [J]. Soil Biology & Biochemistry,2015(80):146-155 [27] JAKOBSEN I,ABBOTT L K,ROBSON A D. External hyphae of vesicular arbuscular mycorrhizal fungi associated with trifolium-subterraneum l.2. hyphal transport of p-32 over defined distances [J]. New Phytologist,1992,120(4):509-516 [28] LEIFHEIT E F,VERBRUGGEN E,RILLIG M C. Arbuscular mycorrhizal fungi reduce decomposition of woody plant litter while increasing soil aggregation [J]. Soil Biology & Biochemistry,2015(81):323-328 [29] TOLJANDER J F,LINDAHL B D,PAUL L R,et al. Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure [J]. Fems Microbiology Ecology,2007,61(2):295-304 [30] ZHOU S X, HUANG C D,HAN B H,et al. Effects of simulated nitrogen deposition on lignin and cellulose degradation of foliar litter in natural evergreen broad-leaved forest in Rainy Area of Western China. [J]. The Journal of Applied Ecology,2016,27(5):1368-1374 [31] CHOWDHURY S,LANGE M,MALIK A A,et al. Plants with arbuscular mycorrhizal fungi efficiently acquire Nitrogen from substrate additions by shaping the decomposer community composition and their net plant carbon demand [J]. Plant Soil,2022,475(1-2):473-490 [32] WINCK B R,CHAUVAT M,COULIBALY S F M,et al. Functional collembolan assemblages induce different plant responses inLolium perenne [J]. Plant Soil,2020,452(1-2):347-358 [33] WILCOTS M E,HARPOLE W S,SEABLOOM E W,et al. Community change can buffer chronic nitrogen impacts,but multiple nutrients tip the scale [J]. Ecology,2021,102(6):3355 [34] FORD H,ROUSK J,GARBUTT A,et al. Grazing effects on microbial community composition,growth and nutrient cycling in salt marsh and sand dune grasslands [J]. Biology Fertility of Soils,2013,49(1):89-98 [35] REN H,GUI W,BAI Y,et al. Long-term effects of grazing and topography on extra-radical hyphae of arbuscular mycorrhizal fungi in semi-arid grasslands [J]. Mycorrhiza,2018,28(2):117-127 [36] MARSHALL C B,MCLAREN J R,TURKINGTON R. Soil microbial communities resistant to changes in plant functional group composition [J]. Soil Biology and Biochemistry,2011,43(1):78-85 |
[1] | ZHU Tian-qi, LU Ze-yu, HU Sang-yuan, LI Guang-yu, LI You-yue, YOU Xiang-kai, GAO Shuang-hong, LIU Tie-yuan, XU Yue-fei. Effects of Salt Stress on Growth and Physiological Characteristics of Two Tall Fescue Seedlings [J]. Acta Agrestia Sinica, 2022, 30(8): 2082-2088. |
[2] | DANG Xu, MA Rui, WEI Lin-yuan, ZHANG Ying-hua, SHI Xin-ping. Effects of Wind-sand Flow Stress on Physiological Characteristics of Lycium ruthenicum Leaves [J]. Acta Agrestia Sinica, 2022, 30(6): 1509-1516. |
[3] | WEI Chang-lin, LI Yi, SHAN Li-shan, XIE Ting-ting, ZHANG Peng. Effects of Different Rainfall on Litter Decomposition of Two Typical Desert Bushwood [J]. Acta Agrestia Sinica, 2022, 30(5): 1280-1289. |
[4] | YU Jian-fei, WANG Yu-tao, ZHANG Yi, ZHANG Hao, LI Jian-ping. Response of Vegetation and Soil Stoichiometry to Precipitation Gradients of Typical Steppe in the Loess Plateau [J]. Acta Agrestia Sinica, 2022, 30(3): 532-543. |
[5] | ZHONG Zhen-mei, YANG Qing, YOU Xiao-feng, XING Shi-he. Effects of Additions of Chamaecrista rotundifolia on the Soluble Nitrogen and Enzyme Activity of red soil [J]. Acta Agrestia Sinica, 2022, 30(3): 622-630. |
[6] | LI Pei, ZHOU Chun-mei, CHEN Dong-ming, LI Qi, DENG Dong-zhou, HUANG Qian, HU Xing-peng, DENG Zhu-xin, ZHOU Ji-qiong, SUN Fei-da, BAI Yan-fu, HAN Jin-feng, SUN Geng, YAN Wu-xian, LIU Lin. Effects of Companion Grass Species on the Early Decomposition of Salix cupularis Leaf Litter in a Desertified Alpine Meadow of the Zoige Plateau [J]. Acta Agrestia Sinica, 2022, 30(12): 3334-3344. |
[7] | XIA Jian-qiang, ZHANG Bo, LI Jia-xin, SUN Shu-fan, WANG Rui. Effects of Litter Mulching on Micro-environment and Seedling Settlement of Stellera chamaejasme in Alpine Grassland [J]. Acta Agrestia Sinica, 2021, 29(9): 1909-1915. |
[8] | WU Xue-mei, YANG Xue-yan, LIN Yuan-yuan, DAI Yi, CAO Le-le, DONG Wen-xuan, LIU Zeng-wen. Response of Humification of Robinia pseudoacacia and Pinus tabulaeformis Litter to Climate Temperature and Humidity Changes [J]. Acta Agrestia Sinica, 2021, 29(8): 1738-1747. |
[9] | ZHANG Shu-zhen, WEI Yu-qi, LIU Nan, XIE Kai-yun, ZHANG Ying-jun, ZHANG Bo. Decomposition Characteristics of Mixed Litter on the Improved Grassland on the Northern Slope of the Tianshan Mountains [J]. Acta Agrestia Sinica, 2021, 29(1): 10-16. |
[10] | CHEN Yin-ping, LI Xiao-hui, LUO Yong-qing, WANG Xu-yang, NIU Ya-yi. Dynamic Characteristics of Vegetation and Its Relationship with Litters in Different Sandy Land Types in Horqin [J]. Acta Agrestia Sinica, 2021, 29(1): 114-120. |
[11] | DU Hong-qi, XU Zhao-xue, FANG Wei-ping, FENG Chang-song, LOU Zhi-guo, YUAN Hua-yi. Expression Regulation of Monocopper Oxidase-like Protein SKU5 Gene and its Role in Alfalfa Fall Dormancy [J]. Acta Agrestia Sinica, 2019, 27(6): 1494-1502. |
[12] | LIU Yong-wan, BAI Wei, YING Peng-song, Feng Yue, Zhang Jing-ran. Effects of Short-term Warming on the Stoichiometric Characteristics and Seasonal Variation of Plant-soil C and N in Alpine Swamp Meadows in the Headwaters Region of the Yangtze River [J]. Acta Agrestia Sinica, 2019, 27(6): 1553-1561. |
[13] | MA Hai-xia, ZHANG De-gang, CHEN Jin, CHANG Jun-xia, DONG Yong-ping, LIU Wen-feng, DU Kai, KANG Yu-kun, LI Qiang, ZHOU Hui-cheng, YAO Yu-jiao, CHEN Jian-gang, XU Chang-lin. Soil Erosion on Slopes of Alpine Meadow in the eastern Qilian Mountains under Simulated Grazing [J]. Acta Agrestia Sinica, 2019, 27(5): 1347-1354. |
[14] | ZHAO Juan, LIU Jia-nan, CHANG Hai-tao, ZHANG An-ning, CHEN Wei, LIU Ren-tao. Litter decomposition rate of dominant plants and its influencing factors in desertified steppe of Ningxia [J]. Acta Agrestia Sinica, 2019, 27(1): 80-87. |
[15] | HOU Dong-jie, QIAO Xian-guo, GAO Chen-guang, ZHAO Hai-wei, ZHAO Li-qing, GUO Ke. Hydro-ecological Effects of Litter in Typical Steppe of Inner Mongolia [J]. Acta Agrestia Sinica, 2018, 26(3): 559-565. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 296
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 207
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||