[1] 张骞,马丽,张中华,等. 青藏高寒区退化草地生态恢复:退化现状、恢复措施、效应与展望[J]. 生态学报,2019,39(20):7441-7451 [2] CAO J J,ADAMOWSKI R C,DEO R C,et al. Grassland degradation on the Qinghai-Tibetan Plateau:reevaluation of causative factors[J]. Rangeland Ecology and Management,2019,72(6):988-995 [3] ELSER J J,STERNER R W,GOROKHOVA E,et al. Biological stoichiometry from genes to ecosystems[J]. Ecology Letters,2000,3(6):540-550 [4] 李军豪,杨国靖,王少平. 青藏高原区退化高寒草甸植被和土壤特征[J]. 应用生态学报,2020,31(6):2109-2118 [5] 李林芝,马源,张小燕,等. 不同退化程度高寒草甸土壤团聚体及其有机碳分布特征[J/OL]. 草地学报,2023,31(1):210-219 [6] 黄天颖,高唤唤,康宏樟. 浦江上游水源涵养林土壤团聚体组成及其碳、氮分布特征[J]. 上海交通大学学报(农业科学版),2017,35(6):1-7 [7] 杨雪梅,杨安,邢文聪,等. 青藏高原中东部表土轻组碳氮含量分布及其影响因素[J]. 生态学杂志,2020,39(8):2565-2573 [8] 侯晓娜,李慧,朱刘兵,等. 生物炭与秸秆添加对砂姜黑土团聚体组成和有机碳分布的影响[J]. 中国农业科学,2015,48(4):705-712 [9] 苏静. 宁南地区植被恢复对土壤团聚体稳定性及碳库的影响[D]. 杨凌:西北农林科技大学,2005:1-6 [10] 毛霞丽,邱志腾,张爽. 不同母质发育土壤团聚体分布对外源输入秸秆的响应及其与有机碳矿化的关系[J]. 环境科学,2020,41 (6):2842-2851 [11] GUPTA V V S R,GERMIDA J J. Soil aggregation:Influence on microbial biomass and implications for biological processes[J]. Soil Biology and Biochemistry,2015(80):3-9 [12] HARRISON A F. 土壤有机磷-文献述评[J]. 土壤学进展,1990,18(4):11-19 [13] 高英志,韩兴国,汪诗平. 放牧对草原土壤的影响[J]. 生态学报,2004,24(4):790-797 [14] CHAPIN F,MATSON A,MOONEY H. Principles of terrestrial ecosystem ecology[M]. 2 nd ed. New York:Springer,2011:67 [15] 史奕,陈欣,沈善敏. 土壤团聚体的稳定机制及人类活动的影响[J]. 应用生态学报,2002(11):1491-1494 [16] 韩贞贵,毛天旭,屠丹,等. 长江源区草地覆盖变化对土壤团聚体分布及稳定性的影响[J]. 草地学报,2020,28(3):801-807 [17] LAVALLEE J M,SOONG J L,COTRUFO M F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21 st century[J]. Global Change Biology,2020(26):261-273 [18] 蔡晓布,彭岳林,于宝政. 西藏高寒草原土壤团聚体有机碳变化及其影响因素分析[J]. 农业工程学报,2013,29(11):92-99 [19] 张玉琪,吴玉鑫,李强,等. 东祁连山不同退化程度高寒草甸土壤氮素与团聚体特征及关系研究[J]. 草地学报,2021,29(10):2286-2293 [20] DONG S K,ZHANG J,LI Y Y,et al. Effect of grassland degradation on aggregate-associated soil organic carbon of alpine grassland ecosystems in Qinghai-Tibetan Plateau[J]. European Journal of Soil Science,2019,71(1):69-79 [21] 赖炽敏,薛娴,赖日文,等. 青藏高原北麓河流域不同退化程度高寒草甸土壤呼吸特征[J]. 草业科学,2019,36(4):952-959,924,926 [22] 李成阳,赖炽敏,彭飞,等. 青藏高原北麓河流域不同退化程度高寒草甸生产力和群落结构特征[J]. 草业科学,2019,36(4):1044-1052 [23] YOU Q G,XUE X,PENG F,et al. Comparison of ecosystem characteristics between degraded and intact alpine meadow in the Qinghai-Tibetan Plateau,China[J]. Ecological Engineering,2014(71):133-143 [24] WU Q B,LIU Y Z. Ground temperature monitoring and its recent change in Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology,2004,38(2-3):85-92 [25] 薛娴,郭坚,张芳,等. 高寒草甸地区沙漠化发展过程及成因分析——以黄河源区玛多县为例[J]. 中国沙漠,2007(5):725-732 [26] WU J,JOERGENSEN R G,POMMERENING B,et al. Measurement of soil microbial biomass C by fumigation extraction-an automated procedure[J]. Soil Biology and Biochemistry,1990,22(8):1167-1169 [27] 彭佩钦,张文菊,童成立,等. 洞庭湖湿地土壤碳、氮、磷及其与土壤物理性状的关系[J]. 应用生态学报,2005(16):1872-1878 [28] 王洪义,常继方,王正文. 退化草地恢复过程中群落物种多样性及生产力对氮磷养分的响应[J]. 中国农业科学,2020(53):2604-2613 [29] 罗引航. 氮磷添加对小嵩草草甸地下净初级生产力的影响[D]. 北京:北京林业大学,2020:20 [30] LIAO J D,BOUTTON T W,JASTROW J D. Storage and dynamics of carbon and nitrogen in soil physical fractions following woody plant invasion of grassland [J]. Soil Biology & Biochemistry,2006,38(11):3184-3196 [31] 沈宏,曹志洪. 不同农田生态系统土壤碳库管理指数的研究[J]. 生态学报,2000,20 (4):663-668 [32] BEARE M H,HENDRIX P F,COLEMAN D C. Water-stable aggregates and organic-matter fractions in conventional-tillage and no-tillage soils[J]. Soil Science Society of America Journal,1994,58(3):777-786 [33] 宋小艳,王长庭,胡雷,等. 若尔盖退化高寒草甸土壤团聚体结合有机碳的变化[J]. 生态学报,2002,42 (4):1538-1548 [34] 柴瑜. 冻融作用对退化高寒草原土壤团聚体有机碳的影响[J]. 西北农业学,2021,30(11):1685-1694 [35] ELLIOTT E T. Aggregate structure and carbon,nitrogen,and phosphorus in native and cultivated soils[J]. Soil Science Society of America Journal,1986,50(3):627-633 [36] 郑有飞,石春红,吴芳芳,等. 土壤微生物活性影响因子的研究进展[J]. 土壤通报,2009,40(5):1209-1214 [37] 蔡晓布,张永青,邵伟. 不同退化程度高寒草原土壤肥力变化特征[J]. 生态学报,2008,28(3):1034-1044 [38] PENG F,XUE X,YOU Q G,et al. Changes of soil properties regulate the soil organic carbon loss with grassland degradation on the Qinghai-Tibet Plateau[J]. Ecological Indicators,2018(93):572-580 [39] 陈秋捷,张楠楠,仲波,等. 若尔盖高寒草地退化沙化过程中土壤养分与团聚体结构的变化特征[J]. 生态科学,2019,38(4):13-20 [40] SIX J,ELLIOTT E T,PAUSTIAN K,et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal,1998,62(5):1367-1377 [41] REGELINK I C,STOOF C R,ROUSSEVA S,et al. Linkages between aggregate formation,porosity and soil chemical properties[J]. Geoderma,2015(247):24-37 [42] NGUETNKAM J P,DULTZ S. Soil degradation in Central North Cameroon:Water-dispersible clay in relation to surface charge in Oxisol A and B horizons[J]. Soil & Tillage Research,2011(113):38-47 [43] CHIVENGE P,VANLAUWE B,GENTILE R,et al. Comparison of organic versus mineral resource effects on short-term aggregate carbon and nitrogen dynamics in a sandy soil versus a fine textured soil[J]. Agriculture Ecosystems and Environment,2011(140):361-371 [44] 马盼盼. 退化高寒草地土壤团聚体稳定性及其养分特征[D]. 兰州:兰州大学,2019:8 [45] 王文颖,王启基,鲁子豫. 高寒草甸土壤组分碳氮含量及草甸退化对组分碳氮的影响[J]. 中国科学(D辑:地球科学),2009,39(5):647-654 [46] 王玉琴,尹亚丽,李世雄. 不同退化程度高寒草甸土壤理化性质及酶活性分析[J]. 生态环境学报,2019,28(6):1108-1116 |