[1] 曾德慧,陈广生. 生态化学计量学:复杂生命系统奥秘的探索[J]. 植物生态学报,2005,29(6):141-153 [2] 王绍强,于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报,2008,28(8):3937-3947 [3] NIU S,REN L,SONG L,et al. Plant stoichiometry characteristics and relationships with soil nutrients in Robinia pseudoacacia communities of different planting ages[J]. Acta Ecologica Sinica,2017,37(6):355-362 [4] 银晓瑞,梁存柱,王立新,等. 内蒙古典型草原不同恢复演替阶段植物养分化学计量学[J]. 植物生态学报,2010,34(1):39-47 [5] XU H,QU Q,LI P,et al. Stocks and Stoichiometry of Soil Organic Carbon,Total Nitrogen,and Total Phosphorus after Vegetation Restoration in the Loess Hilly Region,China[J]. Forests,2019,10(1):27 [6] LAL R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security[J]. Science,2004,304(5677):1623-1627 [7] TSUNODA T,KACHI N,SUZCKI J I. Interactive effects of soil nutrient heterogeneity and belowground herbivory on the growth of plants with different root foraging traits[J]. Plant & Soil,2014,384(1-2):327-334 [8] GVSEWELL S,KOERSELMAN W,VEROEVEN J T. Biomass N:P ratios as indicators of nutrient limitation for plant populations in wetlands[J]. Ecological Applications,2003,13(2):372-384 [9] WHITE R,MURRAY S,ROHWEDER M,et al. Pilot analysis of global ecosystems:Grassland ecosystems[J]. World Resources Institute,2000,4(6):275 [10] 孙鸿烈,郑度,姚檀栋,等. 青藏高原国家生态安全屏障保护与建设[J]. 地理学报,2012,67(1):3-12 [11] GUO N,DEGEN A A,DENG B,et al. Changes in vegetation parameters and soil nutrients along degradation and recovery successions on alpine grasslands of the Tibetan plateau[J]. Agriculture,Ecosystems & Environment,2019,284:106593 [12] MIEHE G,SCHLEUSS P M,SEEBER E,et al. The Kobresia pygmaea ecosystem of the Tibetan highlands-Origin,functioning and degradation of the world's largest pastoral alpine ecosystem:Kobresia pastures of Tibet[J]. Science of The Total Environment,2019,684:754-771 [13] 白永飞,黄建辉,郑淑霞,等. 草地和荒漠生态系统服务功能的形成与调控机制[J]. 植物生态学报,2014,38(2):93-102 [14] DONG S K,SHANG Z H,GAP J X,et al. Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau[J]. Agriculture,Ecosystems and Environment,2020,287:106684 [15] 尚占环,董全民,施建军,等. 青藏高原"黑土滩"退化草地及其生态恢复近10年研究进展——兼论三江源生态恢复问题[J]. 草地学报,2018,26(1):1-21 [16] WANG C T,WANG G X,LIU W,et al. Effects of establishing an artificial grassland on vegetation characteristics and soil quality in a degraded meadow[J]. Israel Journal of Ecology & Evolution,2013,59(3):141-153 [17] 贾映兰,魏培洁,吴明辉,等. 多年冻土区"黑土滩"土壤团聚体对人工建植的响应[J]. 草地学报,2022,30(8):1934-1943 [18] HE H,LI H,ZHU J,et al. The asymptotic response of soil water holding capacity along restoration duration of artificial grasslands from degraded alpine meadows in the Three River Sources,Qinghai-Tibetan Plateau,China[J]. Ecological Research,2018,33(5):1-10 [19] 郑伟,加娜尔古丽,唐高溶,等. 混播种类与混播比例对豆禾混播草地浅层土壤养分的影响[J]. 草业科学,2015,32(3):329-339 [20] 吴晓慧,单熙凯,董世魁,等. 基于改进的Lotka-Volterra种间竞争模型预测退化高寒草地人工恢复演替结果[J]. 生态学报,2019,39(9):3187-3198 [21] 包赛很那,苗彦军,邓时梅,等. 苗期紫花苜蓿株体对不同地区垂穗披碱草种子萌发生长的化感作用[J]. 生态学报,2019,39(4):1475-1483 [22] 青海省市场监督管理局. DB63 青海省人工草地建植技术规范[S]. 2018:1-4 [23] 王维奇,曾从盛,钟春棋,等. 人类干扰对闽江河口湿地土壤碳、氮、磷生态化学计量学特征的影响[J]. 环境科学,2010,31(10):2411-2416 [24] 来幸樑,师尚礼,吴芳,等. 紫花苜蓿与3种多年生禾草混播草地的土壤养分特征[J]. 草业科学,2020,37(1):52-64 [25] 马玉寿,郎百宁,李青云,等. 江河源区高寒草甸退化草地恢复与重建技术研究[J]. 草业科学,2002,19(9):1-5 [26] LEQ D,ZHOU P,SHANG G. Afforestation Drives Soil Carbon and Nitrogen Changes in China[J]. Land Degradation & Development,2017,28:151-165 [27] 欧延升,汪霞,李佳,等. 不同恢复年限人工草地土壤碳氮磷含量及其生态化学计量特征[J]. 应用与环境生物学报,2019,25(1):38-45 [28] CROSS W F,BENSTEAD J P,FROST P C,et al. Ecological stoichiometry in freshwater benthic systems:recent progress and perspectives[J]. Freshwater Biology,2010,50(11):1895-1912 [29] 张皓,何腾兵,林昌虎,等. 不同种植方式黔产半夏土壤养分分析[J]. 江苏农业科学,2015,43(6):226-230 [30] 崔莹. 燕麦和箭筈豌豆混播对人工草地生产性能及土壤性质的影响[D]. 兰州:甘肃农业大学,2014:14-15 [31] FUSUO,ZHANG F S,LI L.Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency[J]. Plant and Soil,2003,248(1-2):305-312 [32] 渠佳慧,李立军,李晓婷. 燕麦与箭筈豌豆不同行比例间作对饲草产量及土壤理化性状的影响[J]. 土壤通报,2018,49(5):1176-1183 [33] 邱扬,傅伯杰,王军,等. 黄土高原小流域土壤养分的时空变异及其影响因子[J]. 自然科学进展,2004,14(3):56-61 [34] 王振,王子煜,韩清芳,等. 黄土高原苜蓿草地土壤碳、氮变化特征研究[J]. 草地学报,2013,21(6):1073-1079 [35] TIAN H,CHEN G,ZHANG C,et al. Pattern and variation of C:N:P ratios in China's soils:a synthesis of observational data[J]. Biogeochemistry,2010,98:139-151 [36] GVSEWELL S,KOERSELMAN W. Variation in nitrogen and phosphorus concentrations of wetland plants[J]. Perspectives in Plant Ecology,Evolution and Systematics,2002,5(1):37-61 [37] BUI E N,HENDERSON B L. C:N:P stoichiometry in Australian soils with respect to vegetation and environmental factors[J]. Plant and Soil,2013,373(1-2):553-568 [38] GÖRAN I.Stoichiometry and Nutrition of Plant Growth in Natural Communities[J]. Annual Review of Ecology Evolution & Systematics,2008,39(1):153-170 [39] 朱秋莲,邢肖毅,张宏,等. 黄土丘陵沟壑区不同植被区土壤生态化学计量特征[J]. 生态学报,2013,33(15):4674-4682 [40] 贾宇,徐炳成,李凤民,等. 半干旱黄土丘陵区苜蓿人工草地土壤磷素有效性及对生产力的响应[J]. 生态学报,2007,27(1):42-47 [41] 曹全恒,胡健,陈雪玲,等. 川西北沙地植被恢复对土壤碳氮磷及生态化学计量特征的影响[J]. 草地学报,2022,30(3):523-531 [42] 林丽,李以康,张法伟等. 高寒矮嵩草群落退化演替系列氮、磷生态化学计量学特征[J]. 生态学报,2013,33(17):5245-5251 [43] YANG Y H,FANG J Y,GUO D L,et al. Vertical patterns of soil carbon,nitrogen and carbon:nitrogen stoichiometry in Tibetan grasslands[J]. Biogeosciences,2010,9(6):631-633 [44] 李金芬,程积民,刘伟,等. 黄土高原云雾山草地土壤有机碳、全氮分布特征[J]. 草地学报,2010,18(5):661-668 [45] PUAL E. Nitrogen cycling in terrestrial ecosystems[J]. Environ Biogeochem,1976,1:225-243 [46] 罗由林,李启权,王昌全,等. 近30年川中丘陵区不同土地利用方式土壤碳氮磷生态化学计量特征变化[J]. 土壤,2016,48(4):726-733 [47] 张金霞,曹广民. 高寒草甸生态系统氮素循环[J]. 生态学报,1999,19(4):509-512(责任编辑 闵芝智)第32卷 第3期 Vol.32 No. 3草 地 学 报 ACTAAGRESTIASINICA 2024年 3月 |