Acta Agrestia Sinica ›› 2024, Vol. 32 ›› Issue (1): 25-36.DOI: 10.11733/j.issn.1007-0435.2024.01.003
Previous Articles Next Articles
YUAN Shu-ya, HE Jing, SU De-rong
Received:
2023-05-24
Revised:
2023-09-23
Online:
2024-01-15
Published:
2024-01-30
袁淑雅, 贺晶, 苏德荣
通讯作者:
贺晶,E-mail:hejing_606@163.com
作者简介:
袁淑雅(2000-),女,汉族,内蒙古巴彦淖尔人,硕士研究生,主要从事草地资源与生态方向的研究,E-mail:15849855513@163.com
基金资助:
CLC Number:
YUAN Shu-ya, HE Jing, SU De-rong. Advances in the Effects of Precipitation Pattern Change and Grazing on Soil Phosphorus Conversion in Grassland[J]. Acta Agrestia Sinica, 2024, 32(1): 25-36.
袁淑雅, 贺晶, 苏德荣. 降水格局变化和放牧对草地土壤磷转化影响的研究进展[J]. 草地学报, 2024, 32(1): 25-36.
[1] 白永飞, 赵玉金, 王扬, 等. 中国北方草地生态系统服务评估和功能区划助力生态安全屏障建设[J]. 中国科学院院刊, 2020, 35(6):675-689 [2] 包凤兰. 内蒙古牧区草原畜牧业经济发展的对策建议[J]. 内蒙古师范大学学报(哲学社会科学版), 2003, 32(3):33-36 [3] 张超, 闫瑞瑞, 梁庆伟, 等. 不同利用方式下草地土壤理化性质及碳、氮固持研究[J]. 草业学报, 2021, 30(4):90-98 [4] ZHOU G, ZHOU X, HE Y, et al. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems:A meta-analysis[J]. Global Change Biology, 2017, 23(3):1167-1179 [5] 于格, 鲁春霞, 谢高地. 草地生态系统服务功能的研究进展[J]. 资源科学, 2005(6):172-179 [6] 赵同谦, 欧阳志云, 贾良清, 等. 中国草地生态系统服务功能间接价值评价[J]. 生态学报, 2004, 24(6):1101-1110 [7] COSTANZA R, STERN D, FISHER B, et al. Influential publications in ecological economics:A citation analysis[J]. Ecological Economics, 2004, 50(3-4):261-292 [8] BüNEMANN E, OBERSON A, FROSSARD E. Phosphorus in Action:Biological Processes in Soil Phosphorus Cycling[M]. Berlin, Heidelberg:Springer Berlin Heidelberg, 2011:75 [9] 陈美领, 陈浩, 毛庆功, 等. 氮沉降对森林土壤磷循环的影响[J]. 生态学报, 2016, 36(16):4965-4976 [10] FENG J, TURNER B L, LYU X, et al. Phosphorus transformations along a large-scale climosequence in arid and semiarid grasslands of northern China:P transformation along climosequence[J]. Global Biogeochemical Cycles, 2016, 30(9):1264-1275 [11] 刘静静. 巢湖内源氮磷的形态、释放规律及控制研究[D]. 合肥:合肥工业大学, 2006:61 [12] 周驰, 宋春雷, 陈玺, 等. 有机磷在调节土壤磷素保持与释放过程中的作用[J]. 土壤, 2013, 45(1):60-66 [13] 王永壮, 陈欣, 史奕. 农田土壤中磷素有效性及影响因素[J]. 应用生态学报, 2013, 24(1):260-268 [14] LAMBERS H. Phosphorus acquisition and utilization in plants[J]. Annual Review of Plant Biology, 2022, 73(1):17-42 [15] SHARMA S B, SAYYED R Z, TRIVEDI M H, et al. Phosphate solubilizing microbes:Sustainable approach for managing phosphorus deficiency in agricultural soils[J]. Springer Plus, 2013, 2(1):587 [16] LIEBISCH F, KELLER F, HUGUENIN-ELIE O, et al. Seasonal dynamics and turnover of microbial phosphorus in a permanent grassland[J]. Biology and Fertility of Soils, 2014, 50(3):465-475 [17] FROSSARD E, CONDRON L M, OBERSON A, et al. Processes governing phosphorus availability in temperate soils[J]. Journal of Environmental Quality, 2000, 29(1):15-23 [18] SATTARI S Z, BOUWMAN A F, MARTINEZ RODRÍGUEZ R, et al. Negative global phosphorus budgets challenge sustainable intensification of grasslands[J]. Nature Communications, 2016, 7(1):10696 [19] ELSER J J, BRACKEN M E S, CLELAND E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters, 2007, 10(12):1135-1142 [20] VITOUSEK P M, PORDER S, HOULTON B Z, et al. Terrestrial phosphorus limitation:Mechanisms, implications, and Nitrogen-Phosphorus interactions[J]. Ecological Applications, 2010, 20(1):5-15 [21] CLEVELAND C C, TOWNSEND A R, TAYLOR P, et al. Relationships among net primary productivity, nutrients and climate in tropical rain forest:a pan-tropical analysis:Errata[J]. Ecology Letters, 2011, 14(12):1313-1317 [22] DU E, TERRER C, PELLEGRINI A F A, et al. Global patterns of terrestrial Nitrogen and Phosphorus limitation[J]. Nature Geoscience, 2020, 13(3):221-226 [23] 吴金凤, 刘鞠善, 李梓萌, 等. 草地土壤磷循环及其对全球变化的响应[J]. 中国草地学报, 2021, 43(6):102-111 [24] 王新源, 赵学勇, 李玉霖, 等. 环境因素对干旱半干旱区凋落物分解的影响研究进展[J]. 应用生态学报, 2013, 24(11):3300-3310 [25] 晔薷罕, 萨茹拉其其格, 温超, 等. 降水、氮沉降及放牧对草地生态系统凋落物分解的影响研究进展[J]. 畜牧与饲料科学, 2021, 42(4):89-97 [26] 乌力吉, 李响, 赵萌莉, 等. 放牧对草地生态系统磷循环调控机制的研究进展与展望[J]. 科学通报, 2020, 65(23):2469-2482 [27] 王东波, 陈丽. 放牧对草地生态系统土壤理化性质的影响[J]. 内蒙古科技与经济, 2006(10):105-106 [28] 王淼, 张宇, 李瑞强, 等. 温性草甸草原植物碳、氮、磷化学计量与贮量对放牧强度的响应[J]. 中国土壤与肥料, 2022(3):201-212 [29] HIERNAUX P, BIELDERS C L, VALENTIN C, et al. Effects of livestock grazing on physical and chemical properties of sandy soils in Sahelian rangelands[J]. Journal of Arid Environments, 1999, 41(3):231-245 [30] 刘欣蕊, 崔媛媛, 王忠武, 等. 放牧和模拟降水对短花针茅荒漠草原植物功能群多样性的影响[J]. 草地学报, 2023, 31(3):868-875 [31] IPCC(Intergovernmental Panel On Climate Change). Detection and Attribution of Climate Change:from Global to Regional[M]. 1 st ed. Cambridge University Press, 2014:867-952 [32] ZHANG Q, XU C Y, ZHANG Z, et al. Spatial and temporal variability of precipitation over China, 1951-2005[J]. Theoretical and Applied Climatology, 2009, 95(1):53-68 [33] 张学珍, 李侠祥, 徐新创, 等. 基于模式优选的21世纪中国气候变化情景集合预估[J]. 地理学报, 2017, 72(9):1555-1568 [34] 刘珂, 姜大膀. RCP4.5情景下中国未来干湿变化预估[J]. 大气科学, 2015, 39(3):489-502 [35] 李亚楠, 张丽, 廖静娟, 等. 藏北中部地区草地退化遥感监测[J]. 遥感技术与应用, 2013, 28(6):1069-1075 [36] 闫钟清, 齐玉春, 李素俭, 等. 降水和氮沉降增加对草地土壤微生物与酶活性的影响研究进展[J]. 微生物学通报, 2017, 44(6):1481-1490 [37] DELGADO-BAQUERIZO M, MAESTRE F T, GALLARDO A, et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands[J]. Nature, 2013, 502(7473):672-676 [38] 樊才睿, 李畅游, 孙标, 等. 不同放牧制度对呼伦贝尔草原径流中磷流失模拟研究[J]. 水土保持学报, 2017, 31(1):17-23, 29 [39] 樊才睿. 不同放牧制度草甸草原生态水文特性研究[D]. 呼和浩特:内蒙古农业大学, 2017:140 [40] WU X Y, ZHANG L P, YU X X. Impacts of surface runoff and sediment on nitrogen and phosphorus loss in red soil region of southern China[J]. Environmental Earth Sciences, 2012, 67(7):1939-1949 [41] ANYAMBA A, TUCKER C J, MAHONEY R. From El Niño to La Niña:Vegetation response patterns over east and southern Africa during the 1997-2000 period[J]. Journal of Climate, 2002, 15(21):3096-3103 [42] FAY P A, BLAIR J M, SMITH M D, et al. Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function[J]. Biogeosciences, 2011, 8(10):3053-3068 [43] LIU X, WAN S, SU B, et al. Response of soil CO2 efflux to water manipulation in a tallgrass prairie ecosystem[J]. Plant and Soil, 2002, 240(2):213-223 [44] 张蕊, 赵学勇, 左小安, 等. 荒漠草原沙生针茅(Stipa glareosa)群落物种多样性和地上生物量对降雨量的响应[J]. 中国沙漠, 2019, 39(2):45-52 [45] 林波, 刘庆, 吴彦, 等. 森林凋落物研究进展[J]. 生态学杂志, 2004, 23(1):60-64 [46] 吕梦渊. 典型草原凋落物分解对干旱的响应[D]. 呼和浩特:内蒙古大学, 2021:44 [47] 豆鹏鹏, 王芳, 马瑜, 等. 叶凋落物碳、氮和磷元素对模拟淋溶的响应[J]. 科学通报, 2018, 63(30):3114-3123 [48] BUTENSCHOEN O, SCHEU S, EISENHAUER N. Interactive effects of warming, soil humidity and plant diversity on litter decomposition and microbial activity[J]. Soil Biology and Biochemistry, 2011, 43(9):1902-1907 [49] SCHIMEL J, BALSER T C, WALLENSTEIN M. Microbial stress-response physiology and its implications for ecosystem function[J]. Ecology, 2007, 88(6):1386-1394 [50] 高嵩. 增温和氮素添加对松嫩草原羊草群落结构和功能的影响[D]. 长春:东北师范大学, 2012:47 [51] 杨新宇, 林笠, 李颖, 等. 青藏高原高寒草甸土壤物理性质及碳组分对增温和降水改变的响应[J]. 北京大学学报(自然科学版), 2017, 53(4):765-774 [52] MOREL C, TUNNEY H, PLÉNET D, et al. Transfer of Phosphate ions between soil and solution:Perspectives in soil testing[J]. Journal of Environmental Quality, 2000, 29(1):50-59 [53] 肖辉林, 郑习健. 土壤温度上升对某些土壤化学性质的影响(英文)[J]. 土壤与环境, 2000, 9(4):316-321 [54] 秦胜金, 刘景双, 王国平. 影响土壤磷有效性变化作用机理[J]. 土壤通报, 2006, 37(5):1012-1016 [55] HOU E, CHEN C, LUO Y, et al. Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems[J]. Global Change Biology, 2018, 24(8):3344-3356 [56] SARDANS J, PEÑUELAS J. Drought changes phosphorus and potassium accumulation patterns in an evergreen Mediterranean forest[J]. Functional Ecology, 2007, 21(2):191-201 [57] LUO G, XUE C, JIANG Q, et al. Soil Carbon, Nitrogen, and Phosphorus cycling microbial populations and their resistance to global change depend on soil C:N:P stoichiometry[J]. Systems, 2020, 5(3):e00162-20 [58] CHYTRY M, DANIHELKA J, ERMAKOV N, et al. Plant species richness in continental southern Siberia:Effects of pH and climate in the context of the species pool hypothesis[J]. Global Ecology and Biogeography, 2007, 16(5):668-678 [59] BRADY N C. The Nature and Properties of Soils[J]. Prentice Hall, 2008(7):1856-1861 [60] JI C J, YANG Y H, HAN W X, et al. Climatic and edaphic controls on soil pH in Alpine grasslands on the Tibetan Plateau, China:A Quantitative Analysis[J]. Pedosphere, 2014, 24(1):39-44 [61] DEVAU N, HINSINGER P, LE CADRE E, et al. Fertilization and pH effects on processes and mechanisms controlling dissolved inorganic phosphorus in soils[J]. Geochimica et Cosmochimica Acta, 2011, 75(10):2980-2996 [62] KIM L H, CHOI E, STENSTROM M K. Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments[J]. Chemosphere, 2003, 50(1):53-61 [63] TANG X, LI R, HAN D, et al. Impacts of electrokinetic isolation of phosphorus through pore water drainage on sediment phosphorus storage dynamics[J]. Environmental Pollution, 2020, 266(2):115210 [64] PARFITT R L. Phosphate adsorption on an oxisol[J]. Soil Science Society of America Journal, 1977, 41(6):1064-1067 [65] 王光火, 朱祖祥, 袁可能. 红壤对磷吸附机理的初步研究[J]. 科技通报, 1989, 5(4):31-35 [66] 张翼. 宁夏荒漠草原植被-土壤-微生物系统对降水变化和增温的响应[D]. 银川:宁夏大学, 2022:51 [67] TORSVIK V, ØVREÅS L, THINGSTAD T F. Prokaryotic diversity——magnitude, dynamics, and controlling factors[J]. Science, 2002, 296(5570):1064-1066 [68] ZHOU J, XIA B, TREVES D S, et al. Spatial and resource factors influencing high microbial diversity in soil[J]. Applied and Environmental Microbiology, 2002, 68(1):326-334 [69] ZHANG X, LIU W, SCHLOTER M, et al. Response of the abundance of key soil microbial Nitrogen-cycling genes to multi-factorial global changes[J]. Plos One, 2013, 8(10):e76500 [70] JACOBSON K M, JACOBSON P J. Rainfall regulates decomposition of buried cellulose in the Namib Desert[J]. Journal of Arid Environments, 1998, 38(4):571-583 [71] ZHANG X, WEI H, CHEN Q, et al. The counteractive effects of nitrogen addition and watering on soil bacterial communities in a steppe ecosystem[J]. Soil Biology and Biochemistry, 2014, 72:26-34 [72] MANZONI S, SCHAEFFER S M, KATUL G, et al. A theoretical analysis of microbial eco-physiological and diffusion limitations to carbon cycling in drying soils[J]. Soil Biology and Biochemistry, 2014, 73:69-83 [73] MCGILL W B, COLE C V. Comparative aspects of cycling of organic C, N, S and P through soil organic matter[J]. Geoderma, 1981, 26(4):267-286 [74] 朱晓亚, 李子豪, 林启美, 等. 模拟不同春季降雨量下典型草原土壤微生物磷周转特征[J]. 生态学报, 2020, 40(8):2655-2661 [75] 杨佳佳, 安韶山, 张宏, 等. 黄土丘陵区小流域侵蚀环境对土壤微生物量及酶活性的影响[J]. 生态学报, 2015, 35(17):5666-5674 [76] CHEN H. Phosphatase activity and P fractions in soils of an 18-year-old Chinese fir (Cunninghamia lanceolata) plantation[J]. Forest Ecology and Management, 2003, 178(3):301-310 [77] DODD I C, PUÉRTOLAS J, HUBER K, et al. The importance of soil drying and re-wetting in crop phytohormonal and nutritional responses to deficit irrigation[J]. Journal of Experimental Botany, 2015, 66(8):2239-2252 [78] DIJKSTRA F A, HE M, JOHANSEN M P, et al. Plant and microbial uptake of Nitrogen and Phosphorus affected by drought using 15 N and 32P tracers[J]. Soil Biology and Biochemistry, 2015, 82:135-142 [79] MOREL J L, HABIB L, PLANTUREUX S, et al. Influence of maize root mucilage on soil aggregate stability[J]. Plant and Soil, 1991, 136(1):111-119 [80] 吕丰娟, 张志华, 汪瑞清, 等. 不同生育期芝麻根系分泌物对连作障碍的响应及其自毒作用[J]. 中国油料作物学报, 2021, 43(6):1087-1098 [81] LIU Y, EVANS S E, FRIESEN M L, et al. Root exudates shift how N mineralization and N fixation contribute to the plant-available N supply in low fertility soils[J]. Soil Biology and Biochemistry, 2022, 165:108541 [82] LOPRESTI E, BADAGLIACCA G, ROMEO M, et al. Does Legume root exudation facilitate itself P uptake in intercropped wheat?[J]. Journal of Soil Science and Plant Nutrition, 2021, 21(4):3269-3283 [83] 罗永清, 赵学勇, 李美霞. 植物根系分泌物生态效应及其影响因素研究综述[J]. 应用生态学报, 2012, 23(12):3496-3504 [84] 解文科, 王小青, 李斌, 等. 植物根系分泌物研究综述[J]. 山东林业科技, 2005(5):67-71 [85] DIJKSTRA F A, CHENG W. Moisture modulates rhizosphere effects on C decomposition in two different soil types[J]. Soil Biology and Biochemistry, 2007, 39(9):2264-2274 [86] 刘雅淑, 孟春凤, 刘延鹏, 等. 森林土壤磷酸酶活性变化特征及其影响因素[J]. 湖北农业科学, 2016, 55(4):850-854 [87] 许艺馨, 余海龙, 李春环, 等. 模拟降水量变化对荒漠草原土壤酶活性的影响及其相关因素分析[J]. 西北植物学报, 2021, 41(11):1912-1923 [88] ASNER G P, ELMORE A J, OLANDER L P, et al. Grazing systems, ecosystem responses, and global change[J]. Annual Review of Environment and Resources, 2004, 29(1):261-299 [89] XUN W, YAN R, REN Y, et al. Grazing-induced microbiome alterations drive soil organic carbon turnover and productivity in meadow steppe[J]. Microbiome, 2018, 6(1):170 [90] NIU K, HE J S, ZHANG S, et al. Tradeoffs between forage quality and soil fertility:Lessons from Himalayan rangelands[J]. Agriculture, Ecosystems & Environment, 2016, 234:31-39 [91] WANG Y, WESCHE K. Vegetation and soil responses to livestock grazing in Central Asian grasslands:a review of Chinese literature[J]. Biodiversity and Conservation, 2016, 25(12):2401-2420 [92] 关伟涛, 郑志荣, 刁兆岩, 等. 不同干扰方式下温性草甸草原土壤碳氮磷化学计量特征及其储量研究[J]. 草地学报, 2022, 30(11):2959-2966 [93] 陈卫民, 武芳梅, 罗有仓, 等. 不同放牧强度对草地土壤含水量、草地生产性能和绵羊增重的影响[J]. 黑龙江畜牧兽医, 2005(10):63-64 [94] ZHAO Y, PETH S, KRüMMELBEIN J, et al. Spatial variability of soil properties affected by grazing intensity in Inner Mongolia grassland[J]. Ecological Modelling, 2007, 205(1):241-254 [95] 杨智明, 王琴, 王秀娟, 等. 放牧强度对草地牧草物候期生活力和土壤含水量的影响[J]. 农业科学研究, 2005(3):5-7,17 [96] PULIDO M, SCHNABEL S, LAVADO CONTADOR J F, et al. The impact of heavy grazing on soil quality and pasture production in rangelands of SW Spain:soil quality and pasture production in rangelands of SW Spain[J]. Land Degradation & Development, 2018, 29(2):219-230 [97] 高英志, 韩兴国, 汪诗平. 放牧对草原土壤的影响[J]. 生态学报, 2004, 24(4):790-797 [98] 萨仁高娃, 曹芙, 敖特根, 等. 短期放牧强度对典型草原土壤有机碳及pH值的影响[J]. 畜牧与饲料科学, 2014, 35(3):5-7 [99] 杨雪龙, 杜岩功, 石丽娜, 等. 基于Meta分析的中国北方草地土壤pH对放牧的响应研究[J]. 草原与草坪, 2021, 41(5):125-130 [100] 李强. 不同恢复措施对松嫩平原退化草地的作用[D]. 长春:东北师范大学, 2010:16-17 [101] 包秀霞, 廉勇, 易津, 等. 不同放牧方式对中蒙典型草原土壤理化特性的影响[J]. 安徽农业科学, 2013, 41(22):9263-9265,9269 [102] WOODBRIDGE J, DAVIES H J, BLAKE W H, et al. Recent environmental change in an upland reservoir catchment:A palaeoecological perspective[J]. Journal of Paleolimnology, 2014, 52(3):229-244 [103] 张茹, 李建平, 张翼, 等. 封育对黄土高原草地深层土壤pH的影响[J]. 生态科学, 2020, 39(1):72-77 [104] 万宏伟. 内蒙古高原成熟和退化羊草草原群落物种功能特性与土壤微生物量C、N、P对氮素添加响应[D]. 北京:中国科学院研究生院(植物研究所), 2006:26 [105] 曹广民, 张金霞, 鲍新奎, 等. 高寒草甸生态系统磷素循环[J]. 生态学报, 1999, 19(4):514-518 [106] 贾涛涛, 廖李容, 王杰, 等. 基于Meta分析的放牧对黄土高原草地生态系统的影响[J]. 草地学报, 2022, 30(10):2772-2781 [107] 刘佳慧, 张韬. 放牧扰动对锡林郭勒典型草原植被特征及土壤养分的影响[J]. 生态环境学报, 2017, 26(12):2016-2023 [108] 王亚婷, 王玺, 赵天启, 等. 不同放牧强度上内蒙古短花针茅草原植物功能群水分和氮素利用效率相关分析[J]. 生态环境学报, 2017, 26(6):964-970 [109] 谭红妍, 闫瑞瑞, 闫玉春, 等. 不同放牧强度下温性草甸草原土壤微生物群落结构PLFAs分析[J]. 草业学报, 2015, 24(3):115-121 [110] 翟文婷, 陈懂懂, 李奇, 等. 放牧强度对环青海湖地区高寒草原土壤微生物群落碳代谢特征的影响[J]. 应用与环境生物学报, 2017, 23(4):685-692 [111] STARK S, VAISANEN M. Insensitivity of soil microbial activity to temporal variation in soil n in subarctic tundra:Evidence from responses to large migratory grazers[J]. Ecosystems, 2014, 17(5):906-917 [112] 孙大帅. 不同放牧强度对青藏高原东部高寒草甸植被和土壤影响的研究[D]. 兰州:兰州大学, 2012:54-57 [113] 翟文婷, 陈懂懂, 李奇, 等. 放牧强度对环青海湖地区高寒草原土壤微生物群落碳代谢特征的影响[J]. 应用与环境生物学报, 2017, 23(4):685-692 [114] 李营, 赵小蓉, 李贵桐, 等. 内蒙古典型草原不同地形单元放牧对土壤微生物量磷及磷酸酶活性的影响[J]. 生态学报, 2022, 42(10):4137-4149 [115] TURNER B L, HAYGARTH P M. Phosphatase activity in temperate pasture soils:Potential regulation of labile organic phosphorus turnover by phosphodiesterase activity[J]. Science of The Total Environment, 2005, 344(1-3):27-36 [116] RUI Y, WANG Y, CHEN C, et al. Warming and grazing increase mineralization of organic P in an alpine meadow ecosystem of Qinghai-Tibet Plateau, China[J]. Plant and Soil, 2012, 357(1):73-87 [117] KATSALIROU E, DENG S, GERAKIS A, et al. Long-term management effects on soil P, microbial biomass P, and phosphatase activities in prairie soils[J]. European Journal of Soil Biology, 2016, 76:61-69 [118] 张梅. 放牧和刈割对内蒙古草原土壤磷库和磷转化相关功能菌群的影响[D]. 乌鲁木齐:新疆农业大学, 2022:21-22 [119] 陈冬明, 孙庚, 郑群英, 等. 放牧强度和短期休牧对青藏高原东部高寒草甸优势物种根系分泌速率的影响[J]. 应用与环境生物学报, 2016, 22(4):555-560 [120] HAMILTON E W, FRANK D A, HINCHEY P M, et al. Defoliation induces root exudation and triggers positive rhizospheric feedbacks in a temperate grassland[J]. Soil Biology and Biochemistry, 2008, 40(11):2865-2873 [121] BAZOT S, MIKOLA J, NGUYEN C, et al. Defoliation-induced changes in carbon allocation and root soluble carbon concentration in field-grown Lolium perenne plants:do they affect carbon availability, microbes and animal trophic groups in soil?[J]. Functional Ecology, 2005, 19(5):886-896 [122] NOWAK R S, CALDWELL M M. A test of compensatory photosynthesis in the field:Implications for herbivory tolerance[J]. Oecologia, 1984, 61(3):311-318 [123] DETLING J K, DYER M I, WINN D T. Net photosynthesis, root respiration, and regrowth of bouteloua gracilis following simulated grazing[J]. Oecologia, 1979, 41(2):127-134 [124] BOEUF-TREMBLAY V, PLANTUREUX S, GUCKERT A. Influence of mechanical impedance on root exudation of maize seedlings at two development stages[J]. Plant and Soil, 1995, 172(2):279-287 [125] GROLEAU-RENAUD V, PLANTUREUX S, GUCKERT A. Influence of plant morphology on root exudation of maize subjected to mechanical impedance in hydroponic conditions[J]. Plant and Soil, 1998, 201(2):231-239 [126] 舒锴, 柯浔, 辛莹, 等. 青藏高原多稳态高寒草甸生态系统蒸散特征对比研究[J]. 草原与草坪, 2019, 39(6):83-88 [127] 陆文龙, 曹一平, 张福锁. 根分泌的有机酸对土壤磷和微量元素的活化作用[J]. 应用生态学报, 1999, 10(3):124-127 [128] HOU E, TANG S, CHEN C, et al. Solubility of Phosphorus in subtropical forest soils as influenced by low-molecular organic acids and key soil properties[J]. Geoderma, 2018, 313:172-180 [129] HENRY F, VESTERGÅRD M, CHRISTENSEN S. Evidence for a transient increase of rhizodeposition within one and a half day after a severe defoliation of Plantago arenaria grown in soil[J]. Soil Biology and Biochemistry, 2008, 40(5):1264-1267 [130] PHILLIPS R P, ERLITZ Y, BIER R, et al. New approach for capturing soluble root exudates in forest soils[J]. Functional Ecology, 2008, 22(6):990-999 [131] HOKKA V, MIKOLA J, VESTBERG M, et al. Interactive effects of defoliation and an AM fungus on plants and soil organisms in experimental legume-grass communities[J]. Oikos, 2004, 106(1):73-84 [132] BADRI D V, VIVANCO J M. Regulation and function of root exudates[J]. Plant, Cell & Environment, 2009, 32(6):666-681 [133] SITTERS J, CHERIF M, EGELKRAUT D, et al. Long-term heavy reindeer grazing promotes plant Phosphorus limitation in arctic tundra[J]. Functional Ecology, 2019, 33(7):1233-1242 [134] SHARMA R, WONG M T F, WEAVER D M, et al. Runoff and leaching of dissolved Phosphorus in streams from a rainfed mixed cropping and grazing catchment under a Mediterranean climate in Australia[J]. Science of The Total Environment, 2021, 771:145371 [135] 杜岩功, 周耕, 郭小伟, 等. 青藏高原高寒草甸土壤N2O排放通量对温度和湿度的响应[J]. 草原与草坪, 2016, 36(1):55-59 [136] REN H, GUI W, BAI Y, et al. Long-term effects of grazing and topography on extra-radical hyphae of arbuscular mycorrhizal fungi in semi-arid grasslands[J]. Mycorrhiza, 2018, 28(2):117-127 [137] ALT F, OELMANN Y, HEROLD N, et al. Phosphorus partitioning in grassland and forest soils of Germany as related to land-use type, management intensity, and land use-related pH[J]. Journal of Plant Nutrition and Soil Science, 2011, 174(2):195-209 [138] GUO Y, DU Q, LI G, et al. Soil phosphorus fractions and arbuscular mycorrhizal fungi diversity following long-term grazing exclusion on semi-arid steppes in Inner Mongolia[J]. Geoderma, 2016, 269:79-90 [139] CHEN H, ZHAO X, CHEN X, et al. Seasonal changes of soil microbial C, N, P and associated nutrient dynamics in a semiarid grassland of north China[J]. Applied Soil Ecology, 2018, 128:89-97 [140] 邱晓. 放牧和模拟气候变化对草地生态系统植被与土壤碳氮循环特征的影响[D]. 呼和浩特:内蒙古农业大学, 2022:36-38 [141] 张蕴薇, 韩建国, 李志强. 放牧强度对土壤物理性质的影响[J]. 草地学报, 2002, 10(1):74-78 [142] 林慧龙. 环县典型草原放牧家畜践踏的模拟研究[D]. 兰州:兰州大学, 2007:110-130 [143] NGUYEN M L, SHEATH G W, SMITH C M, et al. Impact of cattle treading on hill land:Soil physical properties and contaminant runoff[J]. New Zealand Journal of Agricultural Research, 1998, 41(2):279-290 [144] BADDOCK M C, ZOBECK T M, VAN PELT R S, et al. Dust emissions from undisturbed and disturbed, crusted playa surfaces:Cattle trampling effects[J]. Aeolian Research, 2011, 3(1):31-41 [145] 王忠武, 王悦骅, 宝音, 等. 植物群落特征和稳定性对荒漠草原不同放牧强度模拟降水的响应[J]. 内蒙古大学学报(自然科学版), 2020, 51(3):297-306 [146] FYNN R W S, O'CONNOR T G. Effect of stocking rate and rainfall on rangeland dynamics and cattle performance in a semi-arid savanna, South Africa[J]. Journal of Applied Ecology, 2000, 37(3):491-507 [147] HOU E, LUO Y, KUANG Y, et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems[J]. Nature Communications, 2020, 11(1):637 [148] LU J L, JIA P, FENG S W, et al. Remarkable effects of microbial factors on soil phosphorus bioavailability:A country-scale study[J]. Global Change Biology, 2022, 28(14):4459-4471 |
[1] | TIAN Hai-jing, HUANG Wen-guang, WANG Lin, FAN Yun-bao, ZHAO Huan, HUANG Wei, WANG Shun-xia, WANG Peng-jie. Evaluation on the Contribution of the Policy of Grazing Constraint and Grassland Conservation for 20 Years to Grassland Vegetation Restoration in Ningxia [J]. Acta Agrestia Sinica, 2024, 32(1): 37-45. |
[2] | ZHANG Ye, LIU Xin-mei, FAN Yue, ZHANG Wei-wei, WU Ju-ying, WANG Dong-li, ZOU Jun-liang. Effects of Warming and Litter Removal on Soil Respiration in Artificial Grasslands [J]. Acta Agrestia Sinica, 2024, 32(1): 248-260. |
[3] | LEI Lei, ZHANG Feng, ZHENG Jia-hua, YANG Li-shan, WANG Wen-qiong, LI Shao-yu, ZHANG Bin. Effects of Grazing Intensities on Ecosystem Multifunctionality in a Stipa breviflora Desert Steppe [J]. Acta Agrestia Sinica, 2024, 32(1): 275-283. |
[4] | YU Ze-hang, DONG Quan-min, CAO Quan, YU Yang, ZHANG Chun-ping, LIU Wen-tin, YANG Xiao-xia, LIU Yu-zhen, ZHANG Zhen-xiang, FENG Bin, LV Wei-dong, YANG Zeng-zeng. Effects of Different Grazing Patterns on Plant Community Characteristics of Alpine Meadows in Qilian Mountains [J]. Acta Agrestia Sinica, 2023, 31(9): 2621-2627. |
[5] | SU Shu-lan, JI Hai-juan, ZHANG Dong, ZHANG Shuai-qi, LI Xiao-dong, SU Wen-jiang. Characteristics of Water Use Efficiency and its Influencing Factors of Grassland Ecosystem in Qinghai Province [J]. Acta Agrestia Sinica, 2023, 31(9): 2814-2825. |
[6] | SUN Xun, YU Yue, LIANG Jun-yi. Effects of Grazing on Nutritional Quality of Natural Grassland Communities in Northern China:a Meta-analysis [J]. Acta Agrestia Sinica, 2023, 31(9): 2843-2852. |
[7] | LIU Yu-zhen, ZHAO Xin-quan, DONG Quan-min, LIU Wen-ting, YANG Xiao-xia, YU Yang, ZHANG Chun-ping, CAO Quan. Research Progress on the Effects of Grazing on Grassland Ecosystem Structure and Function [J]. Acta Agrestia Sinica, 2023, 31(8): 2253-2262. |
[8] | WU Shuai-kai, HAO Jie, DIAO Hua-jie, JU Xin, NING Ya-nan, SU Yuan, DONG Kuan-hu, WANG Chang-hui. Response of Grassland Biomass to Short-term Grazing Intensities in the Agro-pastoral Ecotone in Northern Shanxi [J]. Acta Agrestia Sinica, 2023, 31(8): 2446-2454. |
[9] | WANG Xin, WANG Yun-ying, PEI Wei-wei, DU Yan-gong. Meta-Analysis of Effects of Grazing on Soil nitrogen Mineralization and Nitrification in Grassland in China [J]. Acta Agrestia Sinica, 2023, 31(8): 2490-2495. |
[10] | PAN Sen, BU Jia-wei, GAN An-qi, SHANG Zhen-yan, GUO Ding, YANG Xiao-xia, DONG Quan-min, NIU De-cao. Effect of Grazing Intensities on Extracellular Enzyme Stoichiometry of Soil Microorganisms in Alpine Grassland [J]. Acta Agrestia Sinica, 2023, 31(6): 1780-1787. |
[11] | WANG Ju, XU Ming-xiang, SUN Hui, ZUO Zhen-jiang, AI Jian-wei. Effects of Grazing on Community Characteristics of Robinia pseudoacacia Forest in the Hilly Loess Plateau Region of Northern Shaanxi Province [J]. Acta Agrestia Sinica, 2023, 31(6): 1826-1833. |
[12] | CHAI Zhi-hui, TIAN Ming-jun, YAO Feng-tong. Digital Technology,Grassland Transfer and Grazing Intensity —An Empirical Analysis Based on Pure Herdsmen in Inner Mongolia [J]. Acta Agrestia Sinica, 2023, 31(6): 1842-1852. |
[13] | YIN Zheng-hui, CHEN Xin-feng, LHA Duo. Analysis on the Niche and Interspecific Association of Dominant Plant Species in Alpine Meadow under Simulated Warming and Grazing [J]. Acta Agrestia Sinica, 2023, 31(5): 1302-1313. |
[14] | XIE Le-le, WANG Xiao-li, MA Yuan, MA Yu-shou, WANG Yan-long, ZHOU Xuan-bo. Effect of the No-Grazing practice in Regreening Period on the Quality and Stoichiometric Ratio of C,N,P of Plant Community in Alpine Meadow [J]. Acta Agrestia Sinica, 2023, 31(5): 1454-1460. |
[15] | DING Ding, REN Liang. The Value Realization System of Grassland Ecological Products was Established Based on The Externality Theory [J]. Acta Agrestia Sinica, 2023, 31(5): 1539-1545. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||