Acta Agrestia Sinica ›› 2024, Vol. 32 ›› Issue (8): 2505-2513.DOI: 10.11733/j.issn.1007-0435.2024.08.017
Previous Articles Next Articles
JIN Zhong-min1,2, LIU Yu-heng1, YUAN Xin-yue1, LIU Bo1, LI Chun-yue1, LIU Li-jie1,2, QIN Xiang-yu1,2, YU Bao-gang1,2, LI Tie1,2
Received:2024-01-23
Revised:2024-03-07
Published:2024-09-07
金忠民1,2, 刘宇恒1, 苑新悦1, 刘博1, 李春月1, 刘丽杰1,2, 秦祥宇1,2, 于保刚1,2, 李铁1,2
作者简介:金忠民(1968-),女,汉族,黑龙江绥化人,博士,教授,主要从事植物逆境生理与分子生物学研究,E-mail:yyy6768@163.com
基金资助:CLC Number:
JIN Zhong-min, LIU Yu-heng, YUAN Xin-yue, LIU Bo, LI Chun-yue, LIU Li-jie, QIN Xiang-yu, YU Bao-gang, LI Tie. Effects of Methylobacterium radiotolerans JB18 on the Growth and Resistance of Cichorium intybus L Seedlings[J]. Acta Agrestia Sinica, 2024, 32(8): 2505-2513.
金忠民, 刘宇恒, 苑新悦, 刘博, 李春月, 刘丽杰, 秦祥宇, 于保刚, 李铁. 耐辐射甲基杆菌JB18对菊苣幼苗生长及抗性的影响[J]. 草地学报, 2024, 32(8): 2505-2513.
| [1] PATHAK A,SINGH S P,TRIPATHI A M,et al. Cichorium intybus:A review on its medicinal importance[J]. Journal of Veterinary Pharmacology and Toxicology,2022,21(1):1-8 [2] WAN X H,GUO H,LIANG Y Y.et al. The physiological functions and pharmaceutical applicationsof inulin:A review[J]. Carbohydrate Polymers,2020,246(20):116589 [3] GHOLAMI H,FARD F R,SAHARKHIZ M J,et al. Yield and physicochemical properties of inulin obtained from Iranian chicory roots under vermicompost and humic acid treatments[J]. Industrial Crops and Products,2018,123:610-616 [4] PEROVIC' J,SˇAPONJAC V T,KOJIC' J,et al. Chicory(Cichorium intybus L.)as a food ingredient-Nutritional composition,bioactivity,safety,and health claims:A review[J]. Food chemistry,2021,336:127676 [5] MOSCATELLO S,BATTISTELLI A,MATTIONI M,et al. Yield,Fructans Accumulation,and Nutritional Quality of Young Chicory Plants as Related to Genotype and Nitrogen Fertilization[J]. Agronomy,2023,13(7):1752 [6] BQYE H,HYMETE A. Levels of heavy metals in common medicinal plants collected from environmentally different sites[J]. Middle East Journal of Scientific Research,2013,13(7):938 [7] 徐梦琪,杨文弢,杨利玉,等. 黔西北山区耕地重金属健康风险评价及环境基准[J]. 环境科学,2022,43(7):3799-3810 [8] ATUCHIN V V,ASYAKINA L K,SERAZETDINOVA Y R,et al. Microorganisms for Bioremediation of Soils Contaminated with Heavy Metals[J]. Microorganisms,2023,11(4):864 [9] SUN L J,GONG P,SUN Y F,et al. Modified chicken manure biochar enhanced the adsorption for Cd2+ in aqueous and immobilization of Cd in contaminated agricultural soil[J]. Science of the Total Environment,2022(851):158252 [10] PRIYADARSHANEE M,DAS S. Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination:A comprehensive review[J]. Journal of Environmental Chemical Engineering,2021,9(1):104686 [11] MALIK B,PIRZADAH T B,TAHIR I,et al. Lead and aluminium-induced oxidative stress and alteration in the activities of antioxidant enzymes in chicory plants[J]. Scientia Horticulturae,2021(278):109847 [12] 姚智卿.铅对人体健康的危害[J]. 微量元素与健康研究,2011,28(5):67-68 [13] SUN L J,GONG P,SUN Y F,et al. Modified chicken manure biochar enhanced the adsorption for Cd2+ in aqueous and immobilization of Cd in contaminated agricultural soil[J]. Science of the Total Environment,2022,851:158252 [14] IORI V,GAUDET M,FABBRINI F,et al. Physiology and genetic architecture of traits associated with cadmium tolerance and accumulation in Populus nigra L[J]. Trees,2016(30):125-139 [15] YUAN W Z,YANG N,LI X K. Advances in understanding how heavy metal pollution triggers gastric cancer[J]. BioMed research International,2016(10):7825432 [16] MATHIVANAN K,CHANDIRIKA J U,MATHIMANI T,et al. Production and functionality of exopolysaccharides in bacteria exposed to a toxic metal environment[J]. Ecotoxicology and Environmental Safety,2021,208:111567 [17] DAS S,LYLA P S,KHAN S A.Marine microbial diversity and ecology:importance and future perspectives[J].Current Science,2006:1325-1335 [18] MA B,SONG W,ZHANG X,et al. Potential application of novel cadmium-tolerant bacteria in bioremediation of Cd-contaminated soil[J]. Ecotoxicology and Environmental Safety,2023,255:114766 [19] ARIf M.S,YASMEEN T,SHAHZAD S M,et al. Lead toxicity induced phytotoxic effects on mung bean can be relegated by lead tolerant Bacillus subtilis (PbRB3)[J]. Chemosphere,2019,234:70-80 [20] 杨怡森,孙晨瑜,马俊卿,等. 玉米接种丛枝菌根真菌后对土壤铅污染的耐受效应[J]. 生态与农村环境学报,2023,39(10):1316-1322 [21] 苍晶.植物生理生化实验原理与技术[M]. 北京:高等教育出版社,2013:148-151 [22] FAZAL H,TARIQ A. A mini review on lead(Pb)toxicity in plants[J]. Journal of Biology and Life Science,2015,6(2):91-101 [23] 曾秀存,许耀照,张芬琴,等. 两种基因型龙葵对镉胁迫的生理响应及镉吸收差异[J]. 农业环境科学学报,2012,31(5):885-890 [24] PHOTOLO M M,SITOLE L,MAVUMENGWANA V,et al. Genomic and physiological investigation of heavy metal resistance from plant endophytic Methylobacterium radiotolerans MAMP 4754,isolated from Combretum erythrophyllum[J]. International Journal of Environmental Research and Public Health,2021,18(3):997-1009 [25] PROMBUNCHACHAI T,NAKAEW N,CHIDBUREE A,et al. Effect of Methylobacterium radiotolerans ED5-9 with capability of producing indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid deaminase on the growth and development of Murdannia loriformis (Hassk.) Rolla Rao & Kammathy under in vitro condition[J]. Naresuan University Journal:Science and Technology,2017,25(2):21-31 [26] SABIR A,NAVEED M,BASHIR M A,et al. Cadmium mediated phytotoxic impacts in Brassica napus:Managing growth,physiological and oxidative disturbances through combined use of biochar and Enterobacter sp. MN17[J]. Journal of Environmental Management,2020,265:110522 [27] 王建秋,曹子林,王晓丽,等.铅胁迫对滇白前生长、光合作用及叶绿素荧光的影响[J]. 草地学报,2021,29(11):2422-2427 [28] 邹文桐,王艳君,曹智,等. 不同种植模式下重金属污染对牧草叶片光合特性和重金属含量的影响[J]. 热带亚热带植物学报,2021,29(1):31-40 [29] ANKET S,VINOD K,BABAR S,et al. Photosynthetic response of plants under different abiotic stresses:A review[J]. Journal of Plant Growth Regulation,2019,39(2):509-531 [30] HEYNO E,KLOSE C,KRIEGER-LISZKAY A.Origin of cadmium-induced reactive oxygen species production:mitochondrial electron transfer versus plasma membrane NADPH oxidase[J].New Phytologist,2008,179(3):687-699 [31] 杜雪,彭玉兰,张新彤,等. 重金属铜、锌对火炬树幼苗生长及生理指标的影响[J]. 西南农业学报,2022,35(6):1407-1414 [32] 金忠民,李春月,刘本松,等. 菌株JB12影响铅镉胁迫下菊苣黄酮合成的转录组分析[J]. 草地学报,2023,31(06):1648-1655 [33] QIN S,LIU H,NIE Z,et al. AsA-GSH cycle and antioxidant enzymes play important roles in Cd tolerance of wheat[J]. Bulletin of Environmental Contamination and Toxicology,2018,101(5):684-690 [34] KHANNA K,JAMWAL V L,KOHLI S K,et al. Plant growth promoting rhizobacteria induced Cd tolerance in Lycopersicon esculentum through altered antioxidative defence expression[J]. Chemosphere,2019,217:463-474 [35] NAVEED M,MUSTAFA A,AZHAR S Q T A,et al. Burkholderia phytofirmans PsJN and tree twigs derived biochar together retrieved Pb-induced growth,physiological and biochemical disturbances by minimizing its uptake and translocation in mung bean (Vigna radiata L.)[J]. Journal of Environmental Management,2020,257:109974 [36] JIN Z M,DENG S Q,WEN Y,et al. Application of Simplicillium chinense for Cd and Pb biosorption and enhancing heavy metal phytoremediation of soils[J]. Science of the Total Environment,2019,697:134148 [37] HAN H,SHENG X,HU J,et al. Metal-immobilizing Serratia liquefaciens CL-1 and Bacillus thuringiensis X30 increase biomass and reduce heavy metal accumulation of radish under field conditions[J]. Ecotoxicology and Environmental Safety,2018,161:526-533 [38] 高慧兵,郁培义,孙宇靖,等. 铅锌胁迫下蓖麻叶糖代谢规律及相关酶基因差异表达分析[J]. 植物生理学报,2019,55(4):483-492 [39] DOEHLERT D C,HUBER S C. Regulation of spinach leaf sucrose phosphate synthase by glucosephosphate,inorganic phosphate,and pH[J]. Plant Physiol,1983,73(4):989-994 [40] KATHARINA S,ALEXANDER G,MARGO D,et al. Sucrose synthase:A unique glycosyltransferase for biocatalytic glycosylation process development[J]. Biotechnology Advances,2016,34(2):88-111 [41] SHEN J,XU Y,YUAN S,et al. Genome-Wide Identification of GmSPS Gene Family in Soybean and Expression Analysis in Response to Cold Stress[J]. International Journal of Molecular Sciences,2023,24(16):12878 [42] 王日明,王志强,向佐湘,等. γ-氨基丁酸对高温胁迫下黑麦草光合特性及碳水化合物代谢的影响[J]. 草业学报,2019,28(2):168-178 [43] KAZEROONI E A,MAHARACHCHIKUMBURA S S N,ALSADI A M,et al. Effects of the rhizosphere fungus cunninghamella bertholletiae on the Solanum lycopersicum response to diverse abiotic stresses[J]. International Journal of Molecular Sciences,2022,23(16):8909 |
| [1] | LI Di-na, WANG Kai, TAO Jia-li, XU Tao, LI Qing-xiu, ZHU Hui-sen, CEN Hui-fang. Cloning, Subcellular Localization and Expression Analysis of MsMYB44 Gene of Medicago sativa‘Pianguan’ [J]. Acta Agrestia Sinica, 2026, 34(1): 33-42. |
| [2] | AN Qi, GAO Kai, SUN Zhong-lin, LIAN Ji-ming, BI Bei. Responses of Plant Functional Traits of Cenchrus spinifex to Rainfall Changes and Shading [J]. Acta Agrestia Sinica, 2026, 34(1): 52-60. |
| [3] | PI Dong-ge, LI Hai-yan, YANG Yun-fei, GUO Jian, YUE Xiu-quan, LI Ya-nan. Effects of Saline-alkali Stress on Seed Germination of Artemisia sieversiana and A. lavandulifolia under Different Temperatures [J]. Acta Agrestia Sinica, 2026, 34(1): 231-238. |
| [4] | YU Wei, ZHOU Xin-xin, YANG Li-e, PENG De-li. Analysis of the Sequence Characteristics of the Chloroplast Genome of Microphysa elongata [J]. Acta Agrestia Sinica, 2025, 33(12): 3933-3943. |
| [5] | SUN Ming, WANG Li, SUN Xin-chao, YUE Guo, HE Yi-ling, WANG Ting, YAN Jia-jun, GOU Wen-long, ZHONG Xi-tong, ZOU Jia-yi, LUO Xiang, BAI Shi-qie. Research Progress on the Role of Glutathione in Regulating Plant Seed Vigor [J]. Acta Agrestia Sinica, 2025, 33(11): 3495-3504. |
| [6] | ZHAO Chun-liu, ZHANG Bin, ZONG Mei, ZHAO Hong, XUE Ying-fei, WANG Chen-chen, LIU Yang-yang, GAO Pu, SUN Cheng, LI Da-yong. Genome Size Estimation and Characterization of Lactuca indica Based on Genome Survey Analysis [J]. Acta Agrestia Sinica, 2025, 33(11): 3540-3549. |
| [7] | YUAN Xin-yue, LIU Yu-heng, YU Bao-gang, QIN Xiang-yu, LI Tie, LIU Li-jie, JIN Zhong-min, HAO Yu. The Alleviating Effects of CaCl2 and 24-EBL on Chicory Seedlings under Pb and Cd Stress [J]. Acta Agrestia Sinica, 2025, 33(11): 3827-3836. |
| [8] | YANG Qian, SU Xu, LIU Yu-ping, LIU Tao, ZHENG Ying-hui, JIN Jia-rui, ZHANG Peng-hui, YU Ming-jun. Identification of SnRK2 Gene Family in Psammochloa villosa and Analysis of Their Expression under Drought Stress [J]. Acta Agrestia Sinica, 2025, 33(10): 3173-3184. |
| [9] | DAI Cai-qin, ZHANG Duo-lin, YANG Jie, ZHANG Bo, ZHANG Wen-liu. Analysis and Comparison of Suitable Areas of Cypripedium tibeticum and Cypripedium flavum in China under Climate Change Scenario [J]. Acta Agrestia Sinica, 2025, 33(10): 3372-3380. |
| [10] | DOU Quan-hui, CHEN Cheng-hao, ZENGTAI Yi-hei, LONGZHU Duo-jie, MIAO Qi, SUN Fang-hui, CAIRANG La-mao, CHEN Xi, SUONAN Ji. Evaluation of Habitat Suitability of Important Medicinal Plants Gentianaceae in the Qinghai-Tibet Plateau Based on the Optimized Maximum Entropy Model [J]. Acta Agrestia Sinica, 2025, 33(9): 3024-3033. |
| [11] | WEI Wen-qiang, XIAO Hong, XU Chang-lin, DENG Ming-yue, MA Kai, WANG Yun, LIU Peng-fei. Estimation of Aboveground Net Primary Productivity of Salix oritrepha in Alpine Meadow of Eastern Qilian Mountains [J]. Acta Agrestia Sinica, 2025, 33(8): 2596-2602. |
| [12] | GAO Xuan-lin, SU Xu, LIU Yu-ping, LYU Yang, LEI Jie-qiong, ZHENG Ying-hui, CAIRANG Zha-xi, FENG Xu, LI Jia-huan. Prediction for Potential Suitable Areas of Allium polyrhizum in China Based on MaxEnt Model [J]. Acta Agrestia Sinica, 2025, 33(8): 2618-2626. |
| [13] | Alamu, YIN Zheng-hui, LI Sen, DANZENG Jin-mei, LEI Ming, ZHAO Zhi-qiang, BIAN Ma, GONGBU Ke-zhu, WEN Xue-mei. Analysis of Niche and Interspecific Association of Dominant Plant Species of marsh wetlands of Lhasa River Basin [J]. Acta Agrestia Sinica, 2025, 33(8): 2666-2676. |
| [14] | CHEN Cai-jin, MA Lin, BAO Ming-fang, JIANG Qing-xue, ZHANG Guo-hui, ZHANG Shang-pei, GAO Ting, LIU Wen-hui, WANG Xue-min. Research Progress on the Role of WRKY Family Genes in Plants [J]. Acta Agrestia Sinica, 2025, 33(7): 2059-2069. |
| [15] | JIANG Qing-xue, BAO Xiu-xia, YIN Guo-mei, ZHANG Zhi-peng, WANG Xue-min, LIAN Yong. Effects of Drought Stress on Seed Ultrastructure and Endogenous Hormones of Allium polyrhizum [J]. Acta Agrestia Sinica, 2025, 33(7): 2114-2122. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||