[1] KIM J H,TSUKAYA H. Regulation of plant growth and development by the GROWTH-REGULATING FACTOR and GRF-INTERACTING FACTOR duo[J]. Journal of Experimental Botany,2015(20):6093-6107 [2] KIM J H,CHOI D S,KENDE H. The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis[J]. Plant Journal,2003,36(1):94-104 [3] BAUCHER M,MOUSSAWI J,VANDEPUTTE O M,et al. A role for the miR396/GRF network in specification of organ type during flower development,as supported by ectopic expression of Populus trichocarpa miR396c in transgenic tobacco[J]. Plant Biology,2013,15(5):892-898 [4] KIM J H,LEE B H. GROWTH-REGULATING FACTOR4 of Arabidopsis thaliana is required for development of leaves,cotyledons,and shoot apical meristem[J]. Journal of Plant Biology,2006,49(6):463-468 [5] CHOI D,KIM J H,KENDE H. Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in rice (Oryza sativa L.)[J]. Plant and Cell Physiology,2004,45(7):897-904 [6] KNAAPE V D,KIM J H,KENDE H. A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth[J]. Plant Physiology,2000,122(3):695-704 [7] KIM J H,KENDE H. A transcriptional coactivator,AtGIF1,is involved in regulating leaf growth and morphology in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(36):13374-13379 [8] WANG F,QIU N,DING Q,et al. Genome-wide identification and analysis of the growth-regulating factor family in Chinese cabbage (Brassica rapa L. ssp. pekinensis)[J]. BMC Genomics,2014,15(1):1-12 [9] ZHANG D F,LI B,JIA G Q,et al. Isolation and characterization of genes encoding GRF transcription factors and GIF transcriptional coactivators in Maize (Zea mays L.)[J]. Plant Science,2008,175(6):809-817 [10] CHEN F,YANG Y,LUO X,et al. Genome-wide identification of GRF transcription factors in soybean and expression analysis of GmGRF family under shade stress[J]. BMC Plant Biology,2019,19(1):1-13 [11] ZAN T,ZHANG L,XIE T,et al. Genome-wide identification and analysis of the growth-regulating factor (GRF) gene family and GRF-interacting factor family in Triticum aestivum L[J]. Biochemical Genetics,2020,58(3):705-724 [12] DEBERNARDI J M,MECCHIA M A,VERCRUYSSEN L,et al. Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity[J]. Plant Journal,2014,79(3):413-426 [13] HORIGUCHI G,KIM G T,TSUKAYA H. The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana[J]. Plant Journal,2005,43(1):68-78 [14] HEWEZI T,MAIER T R,NETTLETON D,et al. The Arabidopsis MicroRNA396-GRF1/GRF3 regulatory module acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection[J]. Plant Physiology,2012,159(1):321-335 [15] LIU J,HUA W,YANG H,et al. The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis[J]. Journal of Experimental Botany,2012,63(10):3727-3740 [16] KUIJT S J H,GRECO R,AGALOU A,et al. Interaction between the GROWTH-REGULATING FACTOR and KNOTTED1-LIKE HOMEOBOX families of transcription factors[J]. Plant Physiology,2014,164(4):1952-1966 [17] LI S,GAO F,XIE K,et al. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice[J]. Plant Biotechnology Journal,2016,14(11):2134-2146 [18] WU L,ZHANG D,XUE M,et al. Overexpression of the maize GRF10,an endogenous truncated growth-regulating factor protein,leads to reduction in leaf size and plant height[J]. Journal of Integrative Plant Biology,2014,56(11):1053-1063 [19] JONES-RHOADES M W,BARTEL D P,BARTEL B. MicroRNAS and their regulatory roles in plants[J]. Annual Review of Plant Biology,2006,57(1):19-53 [20] KIM J H. Biological roles and an evolutionary sketch of the GRF-GIF transcriptional complex in plants[J]. Bmb Reports,2019,52(4):227-238 [21] RODRIGUEZ R E,MECCHIA M A,DEBERNARDI J M,et al. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396[J]. Development,2010,137(1):103-112 [22] LIU D,SONG Y,CHEN Z,et al. Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis[J]. Physiologia Plantarum,2009,136(2):223-236 [23] YANG F,LIANG G,LIU D,et al. Arabidopsis MiR396 mediates the development of leaves and flowers in transgenic tobacco[J]. Journal of Plant Biology,2009,52(5):475-481 [24] LIU Y,YAN J,WANG K,et al. MiR396GRF module associates with switchgrass biomass yield and feedstock quality[J]. Plant Biotechnology Journal,2021(19):1523-1536 [25] KIM J,MIZOI J,KIDOKORO S,et al. Arabidopsis GROWTH-REGULATING FACTOR7 functions as a transcriptional repressor of abscisic acid- and osmotic stress-responsive genes,including DREB2A[J]. Plant Cell,2012,24(8):3393-3405 [26] CAO J,HUANG J,LIU X,et al. Genome-wide characterization of the GRF family and their roles in response to salt stress in Gossypium[J]. BMC Genomics,2020,21(1):575 [27] KHADIZA K,KHAN R,JONG-IN P,et al. Molecular characterization and expression profiling of tomato GRF transcription factor family genes in response to abiotic stresses and phytohormones[J]. International Journal of Molecular Sciences,2017,18(5):1056 [28] 赵晓晓,谢坤良,张舒梦,等. 柳枝稷TIFY基因家族的鉴定与分析[J]. 草地学报,2019,27(5):1126-1137 [29] NAIK S N,GOUD V V,ROUT P K,et al. Production of first and second generation biofuels:A comprehensive review[J]. Renewable & Sustainable Energy Reviews,2010,14(2):578-597 [30] SANDERSON M A,REED R L,MCLAUGHLIN S B,et al. Switchgrass as a sustainable bioenergy crop[J]. Bioresource Technology,1996,56(1):83-93 [31] 于晓丹,杜菲,张蕴薇. 盐胁迫对柳枝稷种子萌发和幼苗生长的影响[J]. 草地学报,2010(6):810-815 [32] 徐开杰,王勇锋,汤益,等. 持续干旱及复水对柳枝稷幼苗分蘖期生长发育的影响[J]. 草地学报,2014,22(1):122-133 [33] VARVEL G E,VOGEL K P,MITCHELL R B,et al. Comparison of corn and switchgrass on marginal soils for bioenergy[J]. Biomass & Bioenergy,2008,32(1):18-21 [34] WANG Y,TANG H,DEBARRY J D,et al. MCScanX:a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Research,2012,40(7):e49 [35] ZHANG J Y,LEE Y C,TORRES-JEREZ I,et al. Development of an integrated transcript sequence database and a gene expression atlas for gene discovery and analysis in switchgrass (Panicum virgatum L.)[J]. Plant Journal,2013,74(1):160-173 [36] KORALEWSKI T E,KRUTOVSKY K V. Evolution of exon-intron structure and alternative splicing[J]. Plos One,2011,6(3):e18055 [37] WAN T,LIU Z,LI L,et al. A genome for gnetophytes and early evolution of seed plants[J]. Nature Plants,2018,4(2):82-89 [38] MAERE S,DE BODT S,RAES J,et al. Modeling gene and genome duplications in eukaryotes[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(15):5454-5459 [39] LYNCH M,CONERY J S. The evolutionary fate and consequences of duplicate genes[J]. Science,2000,290(5494):1151-1155 [40] LYNCH M,CONERY J S. The evolutionary demography of duplicate genes[J]. Journal of Structural & Functional Genomics,2003,3(1):35-44 [41] OHNO S,WOLF U,ATKIN N B. Evolution from fish to mammals by gene duplication[J]. Hereditas,1968,59(1):169-187 [42] LYONS E,PEDERSEN B,KANE J,et al. Finding and comparing syntenic regions among arabidopsis and the outgroups papaya,poplar,and grape:coge with rosids[J]. Plant Physiology,2008,148(4):1772-1781 [43] ZHENG L W,MA J J,SONG C H,et al. Genome-wide identification and expression analysis of GRF genes regulating apple tree architecture[J]. Tree Genetics & Genomes,2018,14(4):e0254711 [44] LIANG G,HE H,LI Y,et al. Molecular mechanism of microRNA396 mediating pistil development in Arabidopsis[J]. Plant Physiology,2014,164(1):249-258 |