[1] CHEN A,HUANG L,LIU Q,et al. Optimal temperature of vegetation productivity and its linkage with climate and elevation on the Tibetan Plateau[J]. Global Change Biolology,2021,27(9):1942-1951 [2] 张骞,马丽,张中华,等. 青藏高寒区退化草地生态恢复:退化现状、恢复措施、效应与展望[J]. 生态学报,2019,39(20):7441-7451 [3] 钱拴,毛留喜,张艳红. 中国天然草地植被生长气象条件评价模型[J]. 生态学杂志,2007(9):1499-1504 [4] CROUS K Y,UDDLING J,DE KAUWE M G. Temperature responses of photosynthesis and respiration in evergreen trees from boreal to tropical latitudes[J]. New Phytologist,2022,234(2):353-374 [5] KIMM H,GUAN K,GENTINE P,et al. Redefining droughts for the U.S. Corn Belt:The dominant role of atmospheric vapor pressure deficit over soil moisture in regulating stomatal behavior of maize and soybean[J]. Agricultural and Forest Meteorology,2020,287(2):109730 [6] 于贵瑞,王秋凤.植物光合、蒸腾与水分利用的生理生态学[J]. 核农学报,2010,24(3):579-578 [7] 刘敏. 基于RS和GIS的陆地生态系统生产力估算及不确定性研究[D]. 南京:南京师范大学,2008:20-27 [8] 崔耀平,刘纪远,胡云锋,等. 中国植被生长的最适温度估算与分析[J]. 自然资源学报,2012,27(2):281-292 [9] 刘正佳,刘纪远,邵全琴. 不同土地覆盖类型上植被生长的最适温度[J]. 地球信息科学学报,2014,16(1):1-7 [10] JOLLY W M,NEMANI R,RUNNING S W. A generalized,bioclimatic index to predict foliar phenology in response to climate[J]. Global Change Biology,2010,11(4):619-632 [11] PIAO S,MOHAMMAT A,FANG J,et al. NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China[J]. Global Environmental Change,2006,16(4):340-348 [12] 於琍,李克让,陶波,等. 植被地理分布对气候变化的适应性研究[J]. 地理科学进展,2010,29(11):1326-1332 [13] 王力,于海英,张强,等. 青藏高原高寒草地地上生物量对气候变化的响应(英文)[J]. Journal of Geographical Sciences,2018,28(12):1953-1964 [14] 曾纳,任小丽,何洪林,等. 三江源国家公园草地地上生物量时空动态及其气候影响[J]. 生态学报,2023,43(3):1175-1184 [15] 图雅. 基于物种分布模型的中国针茅属植物潜在分布区及其影响因子分析[D]. 北京:北京林业大学,2020:4-5 [16] ZHANG Y,PARAZOO N C,WILLIAMS A P,et al. Large and projected strengthening moisture limitation on end-of-season photosynthesis[J]. Proceedings of the National Academy of Sciences,2020,117(17):9216-9222 [17] HUANG M,PIAO S,CIAIS P,et al. Air temperature optima of vegetation productivity across global biomes[J]. Nature Ecology and Evolution,2019(2):772-782 [18] YUAN W P,ZHENG Y,PIAO S,et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth[J]. Science Advances,2019,5(8):eaax1396 [19] 赵彦茜,肖登攀,柏会子,等. 华北平原冬小麦和夏玉米气候适宜性[J]. 生态学杂志,2020,39(7):2251-2262 [20] 张镱锂,祁威,周才平,等. 青藏高原高寒草地净初级生产力(NPP)时空分异[J]. 地理学报,2013,68(9):1197-1211 [21] CHURKINA G,RUNNING S W. Contrasting climatic controls on the estimated productivity of global terrestrial biomes[J]. Ecosystems,1998,1(2):206-215 [22] HUANG N,WANG J,SONG Y,et al. The adaptation mechanism based on an integrated vulnerability assessment of potato production to climate change in Inner Mongolia,China[J]. Mitigation and Adaptation Strategies for Global Change,2022,27(3):1-19 [23] LIN X,ZHANG Z,WANG S,et al. Response of ecosystem respiration to warming and grazing during the growing seasons in the alpine meadow on the Tibetan Plateau[J]. Agricultural and Forest Meteorology,2011,151(7):792-802 [24] 何玉杰,孔泽,户晓,等. 水热条件分别控制了中国温带草地NDVI的年际变化和增长趋势[J]. 生态学报,2022,42(2):766-777 [25] ZHANG Y, WANG J, WATSON A E. Rapid Vegetation Growth due to Shifts in Climate from Slow to Sustained Warming over Terrestrial Ecosystems in China from 1980 to 2018[J]. Remote Sensing, 2023,15(15):3707 [26] 王军邦,王居午,叶辉,等. 2000~2012年全国气温和降水1 km网格空间插值数据集[J]. 中国科学数据(中英文网络版),2017,2(1):73-80,205-212 [27] WANG J,DONG J,YI Y,et al. Decreasing net primary production due to drought and slight decreases in solar radiation in China from 2000 to 2012[J]. Journal of Geophysical Research:Biogeosciences,2017,122(1):261-278 [28] 王翔,张云鹤,钱旭. 利用数据挖掘方法判断植物水分胁迫状态[C]. 纪念中国农业工程学会成立三十周年暨中国农业工程学会2009年学术年会(CSAE 2009),2009:1062-1063 [29] 颜成正,郑文革,贾剑波,等. 控水条件下侧柏冠层气孔导度对土壤水的响应[J]. 应用生态学报,2020,31(12):4017-4026 [30] ALDUCHOV O A,ESKRIDGE R E. Improved Magnus' form approximation of saturation vapor pressure[J]. Journal of Applied Meteorology,1996,35(4):601-609 [31] 苏大学. 1:1000000中国草地资源图的编制与研究[J]. 自然资源学报,1996(1):75-83 [32] ZHU X,ZHAO A,LI Y,et al. Agricultural irrigation requirements under future climate scenarios in China[J]. Journal of Arid Land,2015,7(2):224-237 [33] FAROOQ M,WAHID A,KOBAYASHI N,et al. Plant drought stress:Effects,mechanisms and management[J]. Agronomy for Sustainable Development,2009,29(1):185-212 [34] RUNDEL P W. The ecological distribution of C4 and C3 grasses in the Hawaiian Islands[J]. Oecologia,1980,45(3):354-359 [35] ANSQUER P,KHALED R A H,CRUZ P,et al. Characterizing and predicting plant phenology in species-rich grasslands[J]. Grass and Forage Science,2009,64(1):57-70 [36] 袁雷,刘依兰. 基于GIS和气候-土地利用信息的西藏青稞种植适宜性区划[J]. 中国农学通报,2017,33(17):92-97 [37] 吴秦豫,姚喜军,梁洁,等. 鄂尔多斯市煤矿区植被覆盖改善和退化效应的时空强度[J]. 干旱区资源与环境,2022,36(8):101-109 [38] 赵淳,雷梦飞,王剑,等. 雷电流幅值累积概率分布曲线拟合方法[J]. 高电压技术,2018,44(5):1598-1604 [39] 温晓金,杨新军,刘焱序,等. 黄土高原长武县域植被变化季相趋势及影响因素[J]. 资源科学,2016,38(4):768-776 [40] 赵伟,李爱农,张正健,等. 基于Landsat8热红外遥感数据的山地地表温度地形效应研究[J]. 遥感技术与应用,2016,31(1):63-73 [41] 饶品增,王义成,王芳. 三江源植被覆盖区NDVI变化及影响因素分析[J]. 草地学报,2021,29(3):572-582 [42] 张颖,章超斌,王钊齐,等. 三江源1982-2012年草地植被覆盖度动态及其对气候变化的响应[J]. 草业科学,2017,34(10):1977-1990 [43] 周秉荣,颜亮东,校瑞香. 三江源地区太阳辐射与日照时空分布特征[J]. 资源科学,2012,34(11):2074-2079 [44] 杜军,周明君,罗布次仁,等. 近50年拉萨日照时数的变化特征[J]. 气象科技,2007(6):818-821 [45] 姚莉,吴庆梅. 青藏高原气候变化特征[J]. 气象科技,2002(3):163-164,143 [46] THOMAS D S,EAMUS D,BELL D. Optimization theory of stomatal behaviour:I. A critical evaluation of five methods of calculation[J]. Journal of Experimental Botany,1999,50(332):385-392 [47] 刘家福,马帅,李帅,等. 1982-2016年东北黑土区植被NDVI动态及其对气候变化的响应[J]. 生态学报,2018,38(21):7647-7657 [48] YAO T,XUE Y,CHEN D,et al. Recent Third Pole's rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment:Multidisciplinary approach with observations,modeling,and analysis[J]. Bulletin of the American Meteorological Society,2019(100):423-444 [49] 陈德亮,徐柏青,姚檀栋,等. 青藏高原环境变化科学评估:过去、现在与未来[J]. 科学通报,2015,60(32):3025-3035 [50] PALLAS J E,MICHEL B E,HARRIS D G. Photosynthesis,transpiration,leaf temperature,and stomatal activity of cotton plants under varying water potentials[J]. Plant Physiology,1967,42(1):76-88 [51] 赵平. 整树水力导度协同冠层气孔导度调节森林蒸腾[J]. 生态学报,2011,31(4):1164-1173 [52] SULMAN B N,ROMAN D T,YI K,et al. High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil[J]. Geophysical Research Letters,2016,43(18):9686-9695 [53] NOVICK K A,FICKLIN D L,STOY P C,et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes[J]. Nature Climate Change,2016,6(11):1023-1027 [54] 孟莹,姜鹏,方缘. 大气水分亏缺对中国两种典型草地生态系统总初级生产力的影响[J]. 生态学杂志,2020,39(11):3633-3642 [55] MONTEITH J L. A reinterpretation of stomatal responses to humidity[J]. Plant Cell and Environment,2010,18(4):357-364 [56] 吴学蕤,赵庆霞,蔡银美,等. 干旱-复水对构树叶片水势和气孔开闭的影响[J]. 草地学报,2023,31(3):769-776 [57] DAI A. Increasing drought under global warming in observations and models[J]. Nature Climate Change,2013,3(2):171 [58] MOORE C E,MEACHAM-HENSOLD K,LEMONNIER P,et al. The effect of increasing temperature on crop photosynthesis:from enzymes to ecosystems[J]. Journal of Experimental Botany,2021,72(8):2822-2844 [59] GROSSIORD C,BUCKLEY T N,CERNUSAK L A,et al. Plant responses to rising vapor pressure deficit[J]. New Phytologist,2020,226(6):1550-1566 [60] LI P L,HU Z M,LIU Y W. Shift in the trend of browning in Southwestern Tibetan Plateau in the past two decades[J]. Agricultural and Forest Meteorology,2020(287):107950 [61] PIAO S,CIAIS P,HUANG Y,et al. The impacts of climate change on water resources and agriculture in China[J]. Nature,2010,467(7311):43-51 [62] 陈哲,金艳霞,孙建,等. 全球变暖对高寒冻土区温室气体通量影响研究进展[J]. 草地学报,2023,31(4):929-942 |