[1] 高丽娜,杨斌,金志琴,等.基于穗粒重的甜高粱耐旱性全基因组关联分析[J].塔里木大学学报,2023,35(1):39-44 [2] TAO Y,SUN Q Z,LI F,et al. Comparative analysis of ensiling characteristics and protein degradation of alfalfa silage prepared with corn or sweet sorghum in semiarid region of Inner Mongolia[J]. Animal Science Journal,2020,91(1):e13321 [3] ZHANG S J,CHAUDHRY A S,RAMDANI D,et al. Chemical composition and in vitro fermentation characteristics of high sugar forage sorghum as an alternative to forage maize for silage making in Tarim Basin,China[J]. Journal of Integrative Agriculture,2016,15(1):175-182 [4] XIE Q,XU Z H. Sustainable agriculture:from sweet sorghum planting and ensiling to ruminant feeding[J]. Molecular Plant,2019,12(5):603-606 [5] 张一为,王鸿英,王显国,等.天津地区饲用高粱属作物品种生长适应性比较[J].草原与草坪,2021,41(2):136-142 [6] 张一为,王鸿英,王显国,等.不同类型饲用高粱属作物营养价值比较[J].饲料研究,2020(10):101-104 [7] 陈超,张宇君,赵丽丽,等.高粱属牧草分子指纹图谱构建及遗传聚类分析[J].西南农业学报,2017,30(10):2191-2195 [8] 王芳,高秋,王杰,等.利用SSR标记分析高粱属种质资源的遗传多样性[J].草业学报,2016,25(5):125-133 [9] 黄卓然,吴晓敏,张慧君,等.四种禾本科作物叶绿体基因组碱基替换的侧翼序列特征[J].植物生理学报,2019,55(7):959-966 [10] 许卫东,阎隆飞,程振起.高粱叶绿体psbD基因的克隆及其高效表达[J].科学通报,1991(22):1741-1744 [11] KLEIN R R. Closing and finishing the mitochondrial and chloroplast genomes of sorghum male-sterile a1 cytoplasm using long span NGS read technology[J]. Plant & Animal Genome,2015(1):10-14 [12] LLORENTE B,SEGRETIN M E,GIANNINI E, et al. Homecoming:rewinding the reductive evolution of the chloroplast genome for increasing crop yields[J]. Nature Communications,2021,12(1):6734 [13] JING M,BAO H,MA Y,et al. The complete chloroplast genome of Poa pratensis (Poaceae),a high-quality forage[J]. American Journal of Plant Sciences,2021,12(12):1755-1760 [14] PING J Y,FENG P P,LI J Y,et al. Molecular evolution and SSRs analysis based on the chloroplast genome of Callitropsis funebris[J]. Ecology and Evolution,2021,11(9):4786-4802 [15] DOYLE J J. A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J]. Phytochemical Bulletin,1987(19):11-15 [16] TILLICH M,LEHWARK P,PELLIZZER T,et al. GeSeq-versatile and accurate annotation of organelle genomes[J]. Nucleic acids research,2017,45(W1):W6-W11 [17] LOWE T M,EDDY S R. tRNAscan-SE:a program for improved detection of transfer RNA genes in genomic sequence[J]. Nucleic Acids Research,1997,25(5):955-964 [18] LOHSE M,DRECHSEL O,BOCK R. OrganellarGenomeDRAW (OGDRAW):a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes[J]. Current Genetics,2007,52(5-6):267-274 [19] THIEL T,MICHALEK W,VARSHNEY R,et al. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.)[J]. Theoretical & Applied Genetics,2003,106(3):411-422 [20] KURTZ S,CHOUDHURI J V,OHLEBUSCH E,et al. REPuter:the manifold applications of repeat analysis on a genomic scale[J]. Nucleic Acids Research,2001,29(22):4633-4642 [21] AMIRYOUSEFI A,HYVÖNEN J,POCZAI P. IRscope:an online program to visualize the junction sites of chloroplast genomes[J]. Bioinformatics,2018,34(17):3030-3031 [22] ROZAS J,FERRER-MATA A,SÁNCHEZ-DELBARRIO J C,et al. DnaSP 6:DNA sequence polymorphism analysis of large data sets[J]. Molecular Biology and Evolution,2017,34(12):3299-3302 [23] KATOH K,STNDLEY D M. MAFFT multiple sequence alignment software version 7:improvements in performance and usability[J]. Molecular Biology and Evolution,2013,30(4):772-780 [24] PRICE M N,DEHAL P S,ARKIN A P. FastTree 2-approximately maximum-likelihood trees for large alignments[J]. Plos One,2010,5(3):e9490 [25] ZHU A D,GUO W H,GUPTA S,et al. Evolutionary dynamics of the plastid inverted repeat:the effects of expansion,contraction,and loss on substitution rates[J]. New Phytologist,2016,209(4):1747-1756 [26] SASKI C,LEE S B,FJELLHEIM S,et al. Complete chloroplast genome sequences of Hordeum vulgare,Sorghum bicolor and Agrostis stolonifera,and comparative analyses with other grass genomes[J]. Theoretical & Applied Genetics,2007,115(4):571-590 [27] ŠMARDA P,BUREŠ P H L,LEITCH I J. et al. Ecological and evolutionary significance of genomic GC content diversity in monocots[J]. Processings of the National Academy of Sciences of the United States of America,2014,111(39):E4096-E4102 [28] WU L W,NIE L P,XU Z C,et al. Comparative and phylogenetic analysis of the complete chloroplast genomes of three Paeonia section Moutan Species (Paeoniaceae)[J]. Frontiers in Genetics,2020(11):980 [29] ZENG J M,CHEN X J,WU X F,et al. Genetic diversity analys is of genus Nicotiana based on SSR markers in chloroplast genome and mitochondria genome[J]. Acta Tabacaria Sinica,2016,22(4):89-97 [30] 卢政阳,于凤扬,肖月娥,等.北陵鸢尾叶绿体基因组及其特征分析[J].草地学报,2023,31(6):1656-1664 [31] 郝新艳,赵淑文,刘嘉伟,等.杂花苜蓿叶绿体基因组特征及系统发育分析[J].草地学报,2023,31(6):1665-1672 [32] ZHENG G,WEI L L,MA L,et al. Comparative analyses of chloroplast genomes from 13 Lagerstroemia (Lythraceae) species:identification of highly divergent regions and inference of phylogenetic relationships[J]. Plant Molecular Biology,2020,102(6):659-676 [33] XIE J B,QIAN K C,SI J N,et al. Conserved noncoding sequences conserve biological networks and influence genome evolution[J]. Heredity,2018(120):437-451 [34] 刘慧,王梦醒,岳文杰,等.糜子叶绿体基因组密码子使用偏性的分析[J].植物科学学报,2017,35(3):362-371 [35] LI G,ZHANG L,XUE P. Codon usage pattern and genetic diversity in chloroplast genomes of Panicum species[J]. Gene,2021(802):145866 [36] SUEOKA N. Intrastrand parity rules of DNA base composition and usage biases of synonymous codons[J]. Journal of Molecular Evolution,1995,40(3):318-325 [37] CAMPBELL W H,GOWRI G. Codon usage in higher plants,green algae,and cyanobacteria[J]. Plant Physiology,1990,92(1):1-11 [38] 杨祥燕,蔡元保,谭秦亮,等.菠萝叶绿体基因组密码子偏好性分析[J].热带作物学报,2022,43(3):439-446 [39] YANG G F,SU K L,ZHAO Y R,et al. Analysis of codon usage in the chloroplast genome of Medicago truncatula[J]. Acta Prataculturae Sinica,2015,24(12):171-179 [40] 胡晓艳,许艳秋,韩有志,等.酸枣叶绿体基因组密码子使用偏性分析[J].森林与环境学报,2019,39(6):621-628 [41] 杨惠娟,刘国顺,张松涛,等.烟草叶绿体密码子的偏好性及聚类分析[J].中国烟草学报,2012,18(2):37-43 [42] 季凯凯,宋希强,陈春国,等.木兰科叶绿体基因组的密码子使用特征分析[J].中国烟草学报,2020,22(11):52-62 [43] 柏梁耀,努热曼古力·扎克尔,董宇,等.南疆阿拉尔地区5种饲用甜高粱农艺性状与营养成分分析[J].饲料研究,2023,46(4):126-130 |