[1] DUAN H C,XUE X,WANG T,et al. Spatial and temporal differences in alpine meadow,alpine steppe and all vegetation of the Qinghai-Tibetan Plateau and their responses to climate change[J]. Remote Sensing,2021,13(4):669 [2] DONG S K. Revitalizing the grassland on the Qinghai-Tibetan Plateau[J]. Grassland Research,2023,2(3):241-250 [3] HARRIS R B. Rangeland degradation on the Qinghai-Tibetan Plateau:a review of the evidence of its magnitude and causes[J]. Journal of Arid Environments,2010,74(1):1-12 [4] 曹广民,龙瑞军.三江源区"黑土滩"型退化草地自然恢复的瓶颈及解决途径[J].草地学报,2009,17(1):4-9 [5] 杨鹏年,李希来,李成一,等.黄河源区斑块化退化高寒草甸土壤微生物多样性对长期封育的响应[J].环境科学,2023,44(4):2293-2303 [6] 李冬梅,尹霞,李良安,等.沙化对高寒草甸土壤磷素组分的影响[J].水土保持通报,2023,43(6):65-71,88 [7] VAN DER SALM C,VAN MIDDELKOOP J C,EHLERT P A I. Changes in soil phosphorus pools of grasslands following 17 yrs of balanced application of manure and fertilizer[J]. Soil Use and Management,2017,33(1):2-12 [8] TOWNSEND A R,PORDER S. Agricultural legacies,food production and its environmental consequences[J]. Proceedings of the National Academy of Sciences,2012,109(16):5917-5918 [9] QURESHI M A,AHMAD Z A,AKHTAR N,et al. Role of phosphate solubilizing bacteria (psb) in enhancing p availability and promoting cotton growth[J]. Journal of Animal and Plant Sciences,2012,22(1):204-210 [10] 李海云,姚拓,张榕,等.红三叶根际溶磷菌株分泌有机酸与溶磷能力的相关性研究[J].草业学报,2018,27(12):113-121 [11] GLICK B R,CHENG Z Y,CZARNY J,et al. Promotion of plant growth by ACC deaminase-producing soil bacteria[J]. European Journal of Plant Pathology,2007,119(3):329-339 [12] BEHESHTI M,KHANI H A ALI, POURBABAEE A A ALI,et al. Enriching periphyton with phosphate-solubilizing microorganisms improves the growth and concentration of phosphorus and micronutrients of rice plant in calcareous paddy soil[J]. Rhizosphere,2022,24:100590 [13] THAKUR M P,VAN DER PUTTEN W H,COBBEN M M P,et al. Microbial invasions in terrestrial ecosystems[J]. Nature Reviews Microbiology,2019,17(10):621-631 [14] 王振龙,杜江,牛勇,等.若尔盖高寒补播草地燕麦根际促生菌的筛选及促生特性研究[J].草地学报,2023,31(5):1406-1413 [15] 许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986:103-109 [16] 蔺宝珺,杨文权,赵帅,等.高寒草甸植物根际溶磷菌的筛选鉴定及其溶磷与促生效果[J].草地学报,2022,30(11):3132-3139 [17] 鲍士旦.土壤农化分析[M].第3版.北京:中国农业出版社,2000:70-97 [18] 于路,黄宇婷,张奎,等.间作紫花苜蓿促进苹果园土壤氮循环的机制[J].北京农学院学报,2023,38(3):34-39 [19] 张廷锐,金玮,李婷,等.典型紫色土亲和性溶磷菌的筛选及促生效应研究[J].环境科学与技术,2021,44(6):21-26 [20] 邓小军,颜权,李海星,等.广西红壤区林木根际溶磷菌的筛选与鉴定[J].中南林业科技大学学报,2019,39(9):28-32,47 [21] 张雪梅,张秀梅,李文涛.鳗草根际溶磷微生物分离、筛选及其对鳗草生长的影响[J].中国水产科学,2020,27(1):82-95 [22] 张晗昱,李丹丹,郑瑾,等.青藏高原多年冻土区解磷菌筛选及抗逆能力评价[J].微生物学报,2024,64(6):1876-1890 [23] 李明源,王继莲,姚拓,等.祁连山高寒草地扁蓿豆和黄花棘豆耐冷PGPB的筛选及促生特性研究[J].农业生物技术学报,2021,29(11):2074-2086 [24] HUNG C S,ZINGARELLI S,NADEAU L J,et al. Carbon catabolite repression and impranil polyurethane degradation in Pseudomonas protegens strain Pf-5[J]. Applied and Environmental Microbiology,2016,82(20):6080-6090 [25] 向信,殷恒霞,朱肇宇,等.青藏高原极端生境细菌多样性差异及影响因素[J].微生物学报,2023,63(8):3235-3251 [26] BELIMOV A A,SAFRONOVA V I,MIMURA T. Response of spring rape (Brassica napus var. oleifera L.) to inoculation with plant growth promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase depends on nutrient status of the plant[J]. Canadian Journal of Microbiology,2002,48(3):189-199 [27] 马超,庄睿花,王时聪,等.微生物入侵影响因素研究进展[J].生态学杂志,2019,38(10):3195-3201 [28] 夏北成.表面以下土壤污染的原位生物恢复[J].中山大学学报(自然科学版),1998(S1):95-100 [29] JOUSSET A,SCHULZ W,SCHEU S,et al. Intraspecific genotypic richness and relatedness predict the invasibility of microbial communities[J]. The ISME Journal,2011,5(7):1108-1114 [30] VAN ELSAS J D,HILL P,CHRONÁKOVÁ A,et al. Survival of genetically marked Escherichia coli O157:H7 in soil as affected by soil microbial community shifts[J].The ISME Journal,2007,1(3):204-214 [31] EISENHAUER N,SCHULZ W,SCHEU S,et al. Niche dimensionality links biodiversity and invasibility of microbial communities[J]. Functional Ecology,2013,27(1):282-288 [32] DELVASTO P,VALVERDE A,BALLESTER A,et al. Characterization of brushite as a re-crystallization product formed during bacterial solubilization of hydroxyapatite in batch cultures[J]. Soil Biology and Biochemistry,2006,38(9):2645-2654 [33] SHARON J A,HATHWAIK L T,GLENN G M,et al. Isolation of efficient phosphate solubilizing bacteria capable of enhancing tomato plant growth[J]. Journal of Soil Science and Plant Nutrition,2016,16(2):525-536 [34] 李凌凌,杨进,孙妤婕,等.台湾假单胞菌的分离、鉴定及其对难溶性磷酸盐的溶解特性[J].武汉科技大学学报,2019,42(5):354-364 [35] 韦双,韩小美,黄伟,等.望天树人工林根际溶磷细菌的筛选及溶磷特性[J].北京林业大学学报,2023,45(3):79-92 [36] 李铸,文勇立,张云,等.若尔盖盆地不同退化阶段草甸土壤含水率、pH及电导率的变化[J].生态环境学报,2016,25(5):752-759 [37] TIEN T M,GASKINS M H,HUBBELL D H. Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.)[J]. Applied and Environmental Microbiology,1979,37(5):1016-1024 [38] GOVINDASAMY V,SENTHILKUMAR M,MAGESHWARAN V,et al. Detection and characterization of ACC deaminase in plant growth promoting rhizobacteria[J]. Journal of Plant Biochemistry and Biotechnology,2009,18(1):71-76 [39] CONFORTE V P,ECHEVERRIA M,SÁNCHEZ C,et al. Engineered ACC deaminase-expressing free-living cells of Mesorhizobium loti show increased nodulation efficiency and competitiveness on Lotus spp[J]. Journal of General and Applied Microbiology,2010,56(4):331-338 [40] MARSCHNER P,CROWLEY D,RENGEL Z. Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis-model and research methods[J]. Soil Biology and Biochemistry,2011,43(5):883-894 [41] MIRLEAU P,DELORME S,PHILIPPOT L,et al. Fitness in soil and rhizosphere of Pseudomonas fluorescens C7R12 compared with a C7R12 mutant affected in pyoverdine synthesis and uptake[J]. FEMS Microbiology Ecology,2000,34(1):35-44 [42] 冯瑞章,姚拓,周万海,等.不同生存环境和磷酸盐对4株溶磷菌溶磷能力的影响[J].应用与环境生物学报,2009,15(6):856-860 |