[1] ZHAO D,WU S. Vulnerability of natural ecosystem in China under regional climate scenarios:An analysis based on eco-geographical regions[J]. Journal of Geographical Sciences,2014,24(2):237-248 [2] 张镱锂. 论青藏高原范围与面积[J]. 地理研究,2002,21(1):1-8 [3] 姚檀栋. 青藏高原水-生态-人类活动考察研究揭示"亚洲水塔"的失衡及其各种潜在风险[J]. 科学通报,2019,64(27):2761-2762 [4] 胡雪,魏晶晶,马丽,等. 西藏嵩草草甸植物功能群去除影响群落生物量及土壤理化性质[J]. 草地学报,2023,31(11):3240-3250 [5] WANG T,YANG D,YANG Y,et al. Unsustainable water supply from thawing permafrost on the Tibetan Plateau in a changing climate[J]. Science Bulletin,2023,68(11):1105-1108 [6] 刘明蕊,刘世婷,马春燕,等. 草地植物和土壤对温度和降水变化的响应研究进展[J/OL]. 生态学杂志,https://kns.cnki.net/kcms/detail/21.1148.Q.20231026.1119.002.html,2023-10-26/2023-12-11 [7] 付刚,沈振西.放牧改变了藏北高原高寒草甸土壤微生物群落[J]. 草业学报,2017,26(10):170-178 [8] 王启兰,曹广民,王长庭. 高寒草甸不同植被土壤微生物数量及微生物生物量的特征[J]. 生态学杂志,2007(7):1002-1008 [9] 彭岳林,蔡晓布,薛会英. 退化高寒草原土壤微生物变化特性研究[J]. 西北农业学报,2007(4):112-115 [10] 易艳芸,张一平,沙丽清,等. 哀牢山亚热带常绿阔叶林土壤微生物多样性对碳输入变化和增温的响应[J]. 武夷科学,2023,39(1):9-22 [11] ZHANG B,CHEN S Y,ZHANG J F,et al. Depth-related responses of soil microbial communities to experimental warming in an alpine meadow on the Qinghai-Tibet Plateau[J]. European Journal of Soil Science,2015,66(3):496-504 [12] 王军,王冠钦,李飞,等. 短期增温对紫花针茅草原土壤微生物群落的影响[J]. 植物生态学报,2018,42(1):116-125 [13] 李仪. 降水减少和施氮对亚热带山地山地森林土壤有机碳含量和微生物群落的影响[D]. 武汉:中国科学院大学,2021:29-48 [14] 潘晓悦,王晓,郭光霞,等. 增温与降水变化对青藏高原高寒草甸土壤nirS反硝化菌群落丰度和群落结构的影响[J]. 生态学报,2017,37(23):7938-7946 [15] 杨阳,陈克龙,章妮,等. 青海湖流域高寒湿地土壤微生物群落对不同降水梯度的响应[J]. 应用与环境生物学报,2022,28(2):290-299 [16] 刘彦琪. 雪被变化对温带典型草地非生长季土壤呼吸以及微生物群落的影响[D]. 天津:天津师范大学,2022:6-12 [17] 岳淏伟. 青藏高原高寒草甸土壤微生物对增温降水的响应机理[D]. 北京:清华大学,2017:58-72 [18] LI Y,LIN Q,WANG S,et al. Soil bacterial community responses to warming and grazing in a Tibetan alpine meadow[J]. FEMS Microbiology Ecology,2016,92(1):v152 [19] LUO C,XU G,WANG Y,et al. Effects of grazing and experimental warming on DOC concentrations in the soil solution on the Qinghai-Tibet plateau[J]. Soil Biology and Biochemistry,2009,41(12):2493-2500 [20] YANG Y,WU L,LIN Q,et al. Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland[J]. Global Change Biology,2013,19(2):637-648 [21] 雷蕾,张峰,郑佳华,等. 放牧强度对短花针茅荒漠草原生态系统多功能性的影响[J]. 草地学报,2024,32(1):275-283 [22] 陈懂懂,孙大帅,张世虎,等. 放牧对青藏高原东缘高寒草甸土壤微生物特征的影响[J]. 兰州大学学报(自然科学版),2011,47(1):73-77 [23] DORJI T,HOPPING K A,WANG S,et al. Grazing and spring snow counteract the effects of warming on an alpine plant community in Tibet through effects on the dominant species[J]. Agricultural and Forest Meteorology,2018,263:188-197 [24] DORJI T,TOTLAND Ø,MOE S R,et al. Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet[J]. Global Change Biology,2013,19(2):459-472 [25] CAPORASO J G,LAUBER C L,WALTERS W A,et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms[J]. The ISME Journal,2012,6(8):1621-1624 [26] 杨帆,李耀明,方震,等. 冰川冻融对末端高寒草甸真菌群落结构和功能的影响[J]. 中国草地学报,2022,44(5):91-101 [27] KNIGHT R,CAPORASO J G,KUCZYNSKI J,et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods,2010,7(5):335-336 [28] LI P,TEDERSOO L,CROWTHER T W,et al. Fossil-fuel-dependent scenarios could lead to a significant decline of global plant-beneficial bacteria abundance in soils by 2100[J]. Nature Food,2023,4(11):996-1006 [29] DIXON P. VEGAN,a package of R functions for community ecology[J]. Journal of Vegetation Science,2003,14(6):927-930 [30] PUSTEJOVSKY J E. ARPobservation:Simulating recording procedures for direct observation of behavior,R package version 1.1[EB/OL]. http://cran.r-project.org/web/packages/ARPobservation,2023-08-05/2023-12-11 [31] 姚世庭,芦光新,邓晔,等. 模拟增温对高寒草地土壤原核生物群落组成及多样性影响[J]. 草地学报,2021,29(S1):27-34 [32] 张晓馥,白雪,张起迪,等. 禁牧对内蒙古克氏针茅草原表层土壤细菌群落结构的影响[J]. 草地学报,2023,31(11):3376-3383 [33] RINNAN R,MICHELSEN A,BÅÅTH E,et al.Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem[J]. Global Change Biology,2007,13(1):28-39 [34] 孙欣. 半干旱草原微生物物种组成和功能基因对降水变化的响应[D]. 北京:清华大学,2015:75-82 [35] ZHOU J,XUE K,XIE J,et al. Microbial mediation of carbon-cycle feedbacks to climate warming[J]. Nature Climate Change,2012,2(2):106-110 [36] 丁成翔,杨晓霞,董全民. 青藏高原高寒草原放牧方式对植被、土壤及微生物群落的影响[J]. 草地学报,2020,28(1):159-169 [37] 谭红妍. 不同放牧强度下温性草甸草原土壤微生物群落结构PLFAs分析[J]. 草业学报,2015,24(3):115-121 [38] 邹雨坤,张静妮,杨殿林,等. 不同利用方式下羊草草原土壤生态系统微生物群落结构的PLFA分析[J]. 草业学报,2011,20(4):27-33 [39] DELGADO-BAQUERIZO M,MAESTRE F T,REICH P B,et al. Microbial diversity drives multifunctionality in terrestrial ecosystems[J]. Nature Communications,2016,7(1):77-89 [40] VOS M,WOLF A B,JENNINGS S J,et al. Micro-scale determinants of bacterial diversity in soil[J]. FEMS Microbiology Reviews,2013,37(6):936-954 [41] 杨阳,贾丽欣,乔荠瑢,等. 重度放牧对荒漠草原土壤养分及微生物多样性的影响[J]. 中国草地学报,2019,41(4):72-79 |