[1] REYNOLDS J F, SMITH D M S, LAMBIN E F, et al. Global Desertification:Building a Science for Dryland Development[J]. Science, 2007, 316(5826):847-851 [2] 王琪, 郑佳华, 赵萌莉, 等. 增温对荒漠草原不同退化程度草地恢复初期影响的研究[J]. 草地学报, 2022, 30(5):1077-1085 [3] TEAGUE R, BARNES M. Grazing management that regenerates ecosystem function and grazingland livelihoods[J]. African Journal of Range & Forage Science, 2017, 34(2):77-86 [4] 徐敏云. 草地载畜量研究进展:中国草畜平衡研究困境与展望[J]. 草业学报, 2014, 23(5):321-329 [5] KEMP D R, GUODONG H, XIANGYANG H, et al. Innovative grassland management systems for environmental and livelihood benefits[J]. Proceedings of the National Academy of Sciences, 2013, 110(21):8369-8374 [6] REN H, EVINER V T, GUI W, et al. Livestock grazing regulates ecosystem multifunctionality in semi-arid grassland[J]. Functional Ecology, 2018, 32(12):2790-2800 [7] GUO X, ZUO X, MEDINA-ROLDÁN E, et al. Effects of multi-resource addition on grassland plant productivity and biodiversity along a resource gradient[J]. Science of The Total Environment, 2023, 857:159367 [8] ZHANG H, FU G. Responses of plant, soil bacterial and fungal communities to grazing vary with pasture seasons and grassland types, northern Tibet[J]. Land Degradation & Development, 2021, 32(4):1821-1832 [9] LEIP A, BILLEN G, GARNIER J, et al. Impacts of European livestock production:nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity[J]. Environmental Research Letters, 2015, 10(11):115004 [10] GAO J, CARMEL Y. Can the intermediate disturbance hypothesis explain grazing-diversity relations at a global scale?[J]. Oikos, 2020, 129(4):493-502 [11] HAYASHI M, FUJITA N, YAMAUCHI A. Theory of grazing optimization in which herbivory improves photosynthetic ability[J]. Journal Of Theoretical Biology, 2007, 248:367-376 [12] ZOU Y L, NIU D C, FU H, et al. Moderate grazing promotes ecosystem carbon sequestration in an Alpine meadow on the Qinghai-Tibetan plateau[J]. Journal of Animal and Plant Sciences, 2015, 25:165-171 [13] LI W, XU F, ZHENG S, et al. Patterns and thresholds of grazing-induced changes in community structure and ecosystem functioning:species-level responses and the critical role of species traits[J]. Journal of Applied Ecology, 2017, 54(3):963-975 [14] 耿林昇, 李红丽, 董智, 等. 放牧对希拉穆仁草原土壤入渗过程影响的定量评估[J]. 水土保持学报, 2022, 36(2):70-77 [15] ELDRIDGE D J, DELGADO-BAQUERIZO M. Continental-scale impacts of livestock grazing on ecosystem supporting and regulating services[J]. Land Degradation & Development, 2017, 28(4):1473-1481 [16] MAESTRE F T, QUERO J L, GOTELLI N J, et al. Plant species richness and ecosystem multifunctionality in global drylands[J]. Science, 2012, 335(6065):214-218 [17] LI J, ZHENG Z, XIE H, et al. Heterogeneous microcommunities and ecosystem multifunctionality in seminatural grasslands under three management modes[J]. Ecology and Evolution, 2017, 7(1):14-25 [18] 郑佳华, 赵萌莉, 王琪, 等. 不同利用方式对大针茅草原生态系统多功能性的影响[J]. 草地学报, 2022, 30(5):1054-1062 [19] 蔡艳, 吕光辉, 何学敏, 等. 不同利用方式下草地生态系统的多功能性与物种多样性[J]. 干旱地区农业研究, 2019, 37(5):200-210 [20] GILING D P, BEAUMELLE L, PHILLIPS H R P, et al. A niche for ecosystem multifunctionality in global change research[J]. Global Change Biology, 2019, 25(3):763-774 [21] WANG L, DELGADO-BAQUERIZO M, WANG D, et al. Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(13):6187-6192 [22] ALLAN E, MANNING P, ALT F, et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition[J]. Ecology Letters, 2015, 18(8):834-843 [23] 武海霞, 王则宇, 尹强, 等. 我国北方荒漠草原退化研究进展[J]. 内蒙古林业科技, 2017, 43(2):58-62 [24] 韩梦琪, 王忠武, 靳宇曦, 等. 短花针茅荒漠草原物种多样性及生产力对长期不同放牧强度的响应[J]. 西北植物学报, 2017, 37(11):2273-2281 [25] 沈婷婷, 王悦骅, 韩国栋. 短花针茅草原生态系统稳定性对放牧的响应[J]. 草原与草坪, 2022, 42(6):88-94 [26] 晔薷罕, 单玉梅, 张璞进, 等. 荒漠草原不同放牧强度背景下添加氮水对凋落物分解的影响[J]. 生态学报, 2020, 40(8):2775-2783 [27] 沈婷婷, 谭瑶, 王悦骅, 等. 荒漠草原植物和土壤碳氮养分含量对不同载畜率的响应[J]. 草地学报, 2023, 31(2):441-447 [28] WANG Z, JIAO S, HAN G, et al. Effects of stocking rate on the variability of peak standing crop in a desert steppe of Eurasia grassland[J]. Environmental Management, 2014, 53(2):266-273 [29] WANG C, TANG Y. A global meta-analyses of the response of multi-taxa diversity to grazing intensity in grasslands[J]. Environmental Research Letters, 2019, 14:114003 [30] KOERNER SE, SMITH MD, BURKEPILE DE, et al.:Change in dominance determines herbivore effects on plant biodiversity[J]. Nature Ecology & Evolution, 2018, 2:1925-1932 [31] MILCHUNAS D G, SALA O E, LAUENROTH W K. A generalized model of the effects of grazing by large herbivores on grassland community structure[J]. American Naturalist, 1988, 132:87-106 [32] ZHANG R, WANG Z, HAN G, et al. Grazing induced changes in plant diversity is a critical factor controlling grassland productivity in the Desert Steppe, Northern China[J]. Agriculture, Ecosystems & Environment, 2018, 265:73-83 [33] ZUO X, ZHANG J, LV P, et al. Effects of plant functional diversity induced by grazing and soil properties on above- and belowground biomass in a semiarid grassland[J]. Ecological Indicators, 2018, 93:555-561 [34] HAO X, YANG J, DONG S, et al. Impacts of short-term grazing intensity on the plant diversity and ecosystem function of alpine steppe on the Qinghai-Tibetan Plateau[J]. Plants, 2022, 11(14):1889 [35] QIN J, REN H, HAN G, et al. Grazing reduces the temporal stability of temperate grasslands in northern China[J]. Flora, 2019, 259:151450 [36] MENCEL J, MOCEK-PLÓCINIAK A, KRYSZAK A. Soil microbial community and enzymatic activity of grasslands under different use practices:a review[J]. Agronomy, 2022, 12(5):1136 [37] OLIVERA N L, PRIETO L, CARRERA A L, et al. Do soil enzymes respond to long-term grazing in an arid ecosystem?[J]. Plant and Soil, 2014, 378(1):35-48 [38] TIAN L, DELL E, SHI W. Chemical composition of dissolved organic matter in agroecosystems:Correlations with soil enzyme activity and carbon and nitrogen mineralization[J]. Applied Soil Ecology, 2010, 46(3):426-435 [39] HECTOR A, BAGCHI R. Biodiversity and ecosystem multifunctionality[J]. Nature, 2007, 448(7150):188-191 [40] TILMAN D, ISBELL F, COWLES J M. Biodiversity and Ecosystem Functioning[J]. Annual Review of Ecology, Evolution, and Systematics, 2014, 45(1):471-493 [41] DELGADO BAQUERIZO M, TRIVEDI P, TRIVEDI C, et al. Microbial richness and composition independently drive soil multifunctionality[J]. Functional Ecology, 2017, 31(12):2330-2343 [42] XU Y, ZHANG Y, YANG J, et al. Influence of tree functional diversity and stand environment on fine root biomass and necromass in four types of evergreen broad-leaved forests[J]. Global Ecology and Conservation, 2020, 21:e00832 [43] LE BAGOUSSE-PINGUET Y, SOLIVERES S, GROSS N, et al. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(17):8419 [44] GROSS N, LE BAGOUSSE-PINGUET Y, LIANCOURT P, et al. Functional trait diversity maximizes ecosystem multifunctionality[J]. Nature Ecology & Evolution, 2017, 1(5):132 |