[1] 綦峥,齐越,杨红,等. 土壤重金属镉污染现状、危害及治理措施[J]. 食品安全质量检测学报,2020,11(7):2286-2294 [2] Rizwan M,Ali S,Adrees M,et al. A critical review on effects,tolerance mechanisms and management of cadmium in vegetables[J]. Chemosphere,2017(182):90-105 [3] 陈亚奎,葛登文,卢滇楠. 镉污染土壤的植物修复技术[J]. 环境生态学,2020,2(9):92-98 [4] Ali H,Khan E,Sajad MA. Phytoremediation of heavy metals—Concepts and applications[J]. Chemosphere,2013(91):869-881 [5] Hu Y,Xu L,Tian S,et al. Site-specific regulation of transcriptional responses to cadmium stress in the hyperaccumulator,Sedum alfredii:based on stem parenchymal and vascular cells[J]. Plant Molecular Biology,2019,99(4-5):347-362 [6] 曾星,李伟亚,陈章,等. 龙葵修复镉污染土壤的研究进展[J]. 草业科学,2019,36(5):1308-1316 [7] Zhu H,Ai H,Cao L,et al. Transcriptome analysis providing novel insights for Cd-resistant tall fescue responses to Cd stress[J]. Ecotoxicology and Environmental Safety,2018(160):349-356 [8] 鲜靖苹,柴澍杰,王勇,等. 镉胁迫对草地早熟禾生长与生理代谢的影响[J]. 核农学报,2019,33(1):176-186 [9] 徐佩贤. 高羊茅和草地早熟禾对镉的耐受能力和解毒机制研究[D]. 上海:上海交通大学,2014:96-97 [10] Xu P,Wang Z. A comparison study in cadmium tolerance and accumulation in two cool-season turfgrasses and Solanum nigrum L.[J]. Water Air & Soil Pollution,2014,225(5):1938 [11] Planas-Riverola A,Gupta A,Betegón-Putzeet I,et al. Brassinosteroid signaling in plant development and adaptation to stress[J]. Development,2019,146(5):151894 [12] 覃凤飞,李志华,刘信宝,等. 外源2,4表油菜素内酯对越夏期高温与弱光胁迫下紫花苜蓿生长和光合性能的影响[J]. 草业学报,2020,29(9):146-160 [13] 普布卓玛,罗艺岚,高金柱,等. 2,4表-油菜素内酯对低温胁迫下西藏野生垂穗披碱草幼苗抗氧化保护和渗透调节的影响[J]. 草地学报,2019,27(3):547-552 [14] 陈燕华,王亚梁,朱德峰,等. 外源油菜素内酯缓解水稻穗分化期高温伤害的机理研究[J]. 中国水稻科学,2019,33(5):457-466 [15] 丁丹阳,张璐翔,朱智威,等. 叶面喷施2,4-表油菜素内酯对烟草抗旱性的影响[J]. 中国烟草科学,2018,39(4):50-57 [16] 寇江涛. 外源2,4-表油菜素内酯对NaCl胁迫下燕麦幼苗光合特性的影响[J]. 华北农学报,2020,35(2):79-87 [17] 俞明宏,王力明,刘继,等. 表油菜素内酯对镉胁迫下番茄幼苗生长及镉累积的影响[J].中国土壤与肥料,2020(3):151-156 [18] 刘大林,杨俊俏,刘兆明,等. 镉、铅胁迫对草地早熟禾幼苗生理的影响[J]. 草业科学,2015,32(2):224-230 [19] 李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社,2000:134-137 [20] Hodgins R R,Van Huystee R B. Rapid Simultaneous Estimation of Protoporphyrin and Mg-Porphyrins in Higher Plants[J]. Journal of Plant Physiology,1986,125(3-4):311-323 [21] 赵春旭,马祥,董文科,等. 低温胁迫下不同青海野生草地早熟禾的转录组比较分析[J]. 草地学报,2020,28(2):305-318 [22] Niu K J,MA H L. The positive effects of exogenous 5-aminolevulinic acid on the chlorophyll biosynthesis,photosystem and calvin cycle of Kentucky bluegrass seedlings in response to osmotic stress[J]. Environmental and Experimental Botany,2018(155):260-271 [23] Livak K J,Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR[J]. Methods,2002,25(4):402-408 [24] 周际海,程坤,郜茹茹,等. 土壤镉污染对香樟幼苗光合和生理特性的影响[J]. 林业科学,2020,56(6):193-201 [25] Anjum S A,Xie X Y,Wang L C,et al. Morphological,physiological and biochemical responses of plants to drought stress[J]. African Journal of Agricultural Research,2011,6(9):2026-2032 [26] Jespersen D,Zhang J,Huang B R. Chlorophyll loss associated with heat-induced senescence in bentgrass[J]. Plant Science,2016(249):1-12 [27] Dalal V K,Tripathy B C. Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis[J]. Plant Cell & Environment,2012,35(9):1685-1703 [28] 向丽霞,胡立盼,孟森,等. 叶面喷施亚精胺对高温胁迫下番茄叶绿素合成代谢的影响[J]. 西北植物学报,2020,40(5):846-851 [29] 张丽,徐志然,胡晓辉,等. 叶面喷施亚精胺对盐碱胁迫下番茄幼苗生长及其叶绿素合成前体含量的影响[J]. 西北植物学报,2015,35(1):125-130 [30] Kaewsuksaeng S. Chlorophyll Degradation in Horticultural Crops[J]. Walailak Journal of Science and Technology,2011,8(1):987-1005 [31] Tanaka R,Tanaka A. Tetrapyrrole Biosynthesis in Higher Plants[J]. Annual Review of Plant Biology,2007,58(1):321 [32] Akram N A,Ashraf M. Regulation in Plant Stress Tolerance by a Potential Plant Growth Regulator,5-Aminolevulinic Acid[J]. Journal of Plant Growth Regulation,2013,32(3):663-679 [33] Turan S,Tripathy B C. Salt-stress induced modulation of chlorophyll biosynthesis during de-etiolation of rice seedlings[J]. Physiologia Plantarum,2015,153(3):477-491 [34] Stefan H,Bernhard K. Chlorophyll breakdown in higher plants[J]. Biochimica Et Biophysica Acta,2010,1807(8):977-988 [35] Gan L,Han L,Yin S,et al. Chlorophyll Metabolism and Gene Expression in Response to Submergence Stress and Subsequent Recovery in Perennial Ryegrass Accessions Differing in Growth Habits[J]. Journal of Plant Physiology,2020(251):153195 [36] Schelbert,Silvia,Aubry,et al. Pheophytin Pheophorbide Hydrolase (Pheophytinase) Is Involved in Chlorophyll Breakdown during Leaf Senescence in Arabidopsis[J]. Plant Cell,2009,21(3):767-785 [37] Ma N,Ma X,Li A,et al. Cloning and Expression Analysis of Wheat Pheophorbide a Oxygenase Gene TaPaO[J]. Plant Molecular Biology Reporter,2012,30(5):1237-1245 [38] Guo S,Shu S,Zhou H,et al. Exogenous spermidine delays chlorophyll metabolism in cucumber leaves (Cucumis sativus L.) under high temperature stress[J]. Acta Physiologiae Plantarum,2016,38(9):224 [39] Xiao H J,Liu K K,Li D W,et al. Cloning and characterization of the pepper CaPAO gene for defense responses to salt-induced leaf senescence[J]. BMC biotechnology,2015(15):100 [40] Peng R,Sun W,Jin X,et al. Analysis of 2,4-epibrassinolide created an enhancement tolerance on Cd toxicity in Solanum nigrum L[J]. Environmental Science and Pollution Research,2020,27(14):16784-16797 [41] Planas-Riverola A,Gupta A,Betegón-Putze I,et al. Brassinosteroid signaling in plant development and adaptation to stress[J]. Development,2019,146(5):151894 [42] Wang Y,Cao J J,Wang K X,et al. BZR1 mediates brassinosteroid-induced autophagy and nitrogen starvation tolerance in tomato[J]. Plant Physiology,2018,172(2):671-685 [43] Lucas M D,Salomé P. PIFs get brright:Phytochrome interacting factors as integrators of light and hormonal signals[J]. New Phytologist,2014,202(4):1126-1141 [44] Moon J,Zhu L,Shen H,et al. PIF1 directly and indirectly regulates chlorophyll biosynthesis to optimize the greening process in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(27):9433-9438 |