[1] 周静. 藜麦对NaHCO3胁迫适应性机制研究[D]. 吉林:东北师范大学, 2017:1-4 [2] Wang S J, Chen Q, Li Y, et al. Research on saline-alkali soil amelioration with FGD gypsum[J]. Resources Conservation and Recycling, 2017(121):82-92 [3] 宇振荣, 王建武. 中国土地盐碱化及其防治对策研究[J]. 农村生态环境, 1997, 4(3):2-6 [4] 于宝勒. 盐碱地修复利用措施研究进展[J]. 中国农学通报, 2021, 37(7):81-87 [5] Li R, Shi F, Fukuda K. Interactive effects of various salt and alkali stresses on growth, organic solutes, and cation accumulation in a halophyte Spartina alterniflora (Poaceae)[J]. Environmental & Experimental Botany, 2010, 68(1):66-74 [6] Yang C W, Li C Y, Zhang M L, et al. pH and ion balance in wheat-wheatgrass under salt or alkali stress[J]. Chinese Journal of Applied Ecology.2008, 19(5):1000 [7] Wang S M, Zhang Z W. The state of the world's plant genetic resources for food and agriculture[M]. Rome:FAO, 1998:14-18 [8] Jacobsen S E, Quispe H, Mujica A. Quinoa:an alternative crop for saline soils in the Andes[J]. Journal of Experimental Botany, 2001(1999):403-408 [9] Adolf V I, Jacobsen S E, Shabala S. Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.)[J]. Environmental & Experimental Botany, 2013(92):43-54 [10] Gómez-Pando L R, álvarez-Castro R, Eguiluz-De La Barra A. Effect of salt stress on peruvian germplasm of Chenopodium quinoa Willd:a promising crop[J]. Journal of Agronomy and Crop Science, 2010, 196(5):391-396 [11] Prado F E, Boero C, Gallardo M, et al. Effect of NaCl on germination, growth, and soluble sugar content in Chenopodium quinoa Willd. seeds[J]. Botanical Bulletin of Academia Sinica Taipei, 2000, 41(1):27-34 [12] Liang W J, Ma X L, Wan P, et al. Plant salt-tolerance mechanism:A review[J]. Biochemical and Biophysical Research Communications, 2018, 495(1):286-291 [13] 潘平新, 倪强, 马瑞, 等. 不同盐分处理对黑果枸杞种子萌发和幼苗生长的影响[J]. 草地学报, 2021, 29(2):342-348 [14] Boyer J S. Plant productivity and environment[J]. Science, 1982, 218(4571):443-448 [15] Brand J D, Tang C, Rathjen A J, et al. Development of screening methods to identify the tolerance of rough-seeded lupin (Lupinus pilosus Murr. and Lupinus atlanticus Glads.) to calcareous soils[C]//Jacobsen S E, ed. In Proceedings of the 9th International Lupin Conference. Klink:Soil Academic Press, 2000:23-26 [16] 邱璐. 藜麦生长初期对盐碱胁迫的生理响应[D]. 吉林:东北师范大学, 2018:5-7 [17] Saveyn A, Steppe K, Ubierna N, et al. Woody tissue photosynthesis and its contribution to trunk growth and bud development in young plants[J]. Plant Cell and Environment, 2010, 33(11):1949-1958 [18] 吴楚, 范志强, 王政权. 磷胁迫对水曲柳幼苗叶绿素合成、光合作用和生物量分配格局的影响[J]. 应用生态学报, 2004, 15(6):935-940 [19] 董心久, 沙红, 高燕, 等. 盐碱胁迫对甜菜光合物质积累及产量的影响[J]. 新疆农业科学, 2019, 56(4):642-651 [20] 李辛, 赵文智. 荒漠区植物雾冰藜光合特性对混合盐碱胁迫的响应[J]. 生态学报, 2018, 38(4):1183-1193 [21] 贾娜尔·阿汗, 杨春武, 石德成, 等. 盐生植物碱地肤对盐碱胁迫的生理响应特点[J]. 西北植物学报, 2007(1):79-84 [22] 赵颖, 魏小红, 赫亚龙, 等. 混合盐碱胁迫对藜麦种子萌发和幼苗抗氧化特性的影响[J]. 草业学报, 2019, 28(2):156-167 [23] Munns R. Comparative physiology of salt and water stress[J]. Plant Cell & Environment, 2010, 25(2):239-250 [24] 邹琦. 植物生理学实验指导[M]. 北京:中国农业出版社, 2004:72-75 [25] 李合生. 植物生理生化实验原理与技术[M]. 北京:高等教育出版社, 2000:169-184 [26] 郑炳松. 现代植物生理生化研究技术[M]. 北京:气象出版社, 2006:91-92 [27] Shi J, Fu X Z, Peng T, et al. Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response[J]. Tree Physiology, 2010, 30(7):914-922 [28] Aebi H. Catalase in vitro[J]. Methods in Enzymology, 1984, 105(105):121 [29] Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant and Cell Physiology, 1980, 22(5):867-880 [30] 徐国聪, 唐运来, 陈梅, 等. 铀对菠菜叶片光合作用影响的研究[J]. 西北植物学报, 2016, 36(2):370-376 [31] 孔强, 马晓华, 宫莉霞, 等. 不同盐胁迫条件下东方杉的生长及生理响应研究[J]. 西南林业大学学报, 2019, 39(2):179-183 [32] 武小靖, 杨晴, 张国君, 等. 土壤含盐量对枸杞生理生化指标的影响[J]. 北方园艺, 2014(12):137-141 [33] Djanaguiraman M, Ramadass R. Effect of salinity on chlorophyll content of rice genotypes[J]. Agricultural Science Digest, 2004, 24(3):178-181 [34] 赵秋月, 张广臣. 碱性盐胁迫对3种番茄根系活力和光合色素的影响[J]. 江苏农业科学, 2015, 43(11):219-223 [35] Barragan V, Leidi E O, Andres Z, et al. Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis[J]. Plant Cell, 2012, 24:1127-1142 [36] 李波, 邬婷婷, 方志坚, 等. 脱落酸对混合苏打盐碱胁迫苜蓿幼苗营养器官矿质元素含量的影响[J]. 草地学报, 2019, 27(6):1786-1792 [37] 邹丽娜, 周志宇, 颜淑云, 等. 盐分胁迫对紫穗槐幼苗生理生化特性的影响[J]. 草业学报, 2011, 20(3):84-90 [38] Ashraf M, Harris P. Photosynthesis under stressful environments:An overview[J]. Photosynthetica, 2013, 51(2):163-190 [39] 吴顺, 张雪芹, 蔡燕. 干旱胁迫对黄瓜幼苗叶绿素含量和光合特性的影响[J]. 中国农学通报2014, 30(1):133-137 [40] 李远航, 贺康宁, 张潭, 等. 盐胁迫对黑果枸杞光合生理指标的影响[J]. 中国水土保持科学, 2019, 17(1):83-88 [41] Premachandra G S, Saneoka H, Fujita K, et al. Leaf water relations, osmotic adjustment, cell membrane stability, epi-cuticular wax load and growth as affected by increasing water deficits in sorghum[J]. Journal of Experimental Botany, 1992, 43(257):1569-1576 [42] Ha ssanpouraghdam M B, Mehrabani L V, Tzortzalis N. Foliar application of nano-zinc and iron affects physiological attributes of Rosmarinus officinalis and quietens NaCl salinity depression[J]. Journal of Soil Science and Plant Nutrition, 2020(20):335-345 [43] 罗青红, 史彦江, 宋锋惠, 等. 盐碱地杂交榛光合作用日变化及其与环境因子的关系[J]. 果树学报, 2013, 30(4):627-633 [44] 郑译儒, 赵俊超, 龚束芳, 等. NaHCO3和Na2CO3胁迫对碱茅和披碱草种子萌发、幼苗生长和生理指标的影响[J]. 中国科学院大学学报, 2021, 38(2):228-239 [45] 颜志明, 魏跃, 贾思振, 等. 胁迫对草莓抗氧化系统和离子吸收的影响[J]. 北方园艺, 2013(9):1-4 [46] 彭斌, 许伟, 邵荣, 等. 不同生境种源盐地碱蓬幼苗生长发育对盐分胁迫的响应和适应[J]. 草业学报, 2016, 25(4):81-90 [47] Mir M A, John R, Alyemeni M N, et al. Jasmonic acid ameliorates alkaline stress by improving growth performance, ascorbate glutathione cycle and glyoxylase system in maize seedlings[J]. Scientific Reports, 2018(8):2831 [49] 李琳琳, 刘佳, 苏贝贝, 等. 茉莉酸甲酯对颠茄毛状根的生理指标及托品烷类生物碱积累的影响[J]. 西南大学学报(自然科学版), 2017, 39(5):60-75 [50] 杨叶萍, 简敏菲, 余厚平, 等. 镉胁迫对苎麻(Boehmeria nivea)根系及叶片抗氧化系统的影响[J]. 生态毒理学报, 2016, 11(4):184-193 |