[1] BERTOLINO E, REIMUND B, WIINIC D, et al. A novel homeobox protein which recognizes a TGT core and functionally interferes with a retinoid-responsive motif[J]. Journal of Biological Chemistry, 1995, 270(52):31178-31188 [2] BRYAN R, GLASER D, SHAPIRO L. Genetic regulatory hierarchy in Caulobacter development[J]. Advances in Genetics, 1990, 27:1-31 [3] MCGINNIS W, KRUMLAUF R. Homeobox genes and axial patterning[J]. Cell, 1992, 68(2):283-302 [4] SCOTT M P. A rational nomenclature for vertebrate homeobox (HOX) genes[J]. Nucleic Acids Research, 1993, 21(8):1687-1688 [5] HAN Y, ZHANG L, YAN L, et al. Genome-wide analysis of TALE superfamily in Triticum aestivum reveals TaKNOX11-A is involved in abiotic stress response[J]. BMC Genomics, 2022, 3(1):1-21 [6] WANG L, YANG X, GAO Y, et al. Genome-wide identification and characterization of TALE superfamily genes in soybean (Glycine max L.)[J]. International Journal of Molecular Sciences, 2021, 22(8):4117 [7] WANG J, ZHAO P, CHENG B,et al. Identification of TALE transcription factor family and expression patterns related to fruit chloroplast development in tomato (Solanum lycopersicum L.)[J]. International Journal of Molecular Sciences, 2022, 23(9):4507 [8] 韩潇. 不同生长速率欧美杨形成层基因表达分析及杨树BELL基因功能研究[D]. 北京:北京林业大学, 2017:71-72 [9] 赵伟, 李锡香, 王海平, 等. 萝卜TALE转录因子家族的鉴定与分析[J]. 生物工程学报, 2022, 38(1):343-358 [10] BILLETER M, QIAN Y Q, OTTING G, et al. Determination of the nuclear magnetic resonance solution structure of an Antennapedia homeodomain-DNA complex[J]. Journal of Molecular Biology, 1993, 234(4):1084-1097 [11] BVRGLIN T R. Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals[J]. Nucleic Acids Research, 1997, 25(21):4173-4180 [12] HAY A, TSIANTIS M. KNOX genes:versatile regulators of plant development and diversity[J]. Development, 2010, 137(19):3153-3165 [13] CHEN H, ROSIN F M, PRAT S, et al. Interacting transcription factors from the three-amino acid loop extension superclass regulate tuber formation[J]. Plant Physiology, 2003, 132(3):1391-1404 [14] 马强. 棉花TALE超家族转录因子的鉴定分析及GhBLH7-D06的功能验证[D]. 武汉:华中农业大学, 2019:14-15 [15] BRAMBILLA V, BATTAGLIA R, COLOMBO M, et al. Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis[J]. The Plant Cell, 2007, 19(8):2544-2556 [16] KUMAR R, KUSHALAPPA K, GODT D, et al. The Arabidopsis BEL1-LIKE HOMEODOMAIN proteins SAW1 and SAW2 act redundantly to regulate KNOX expression spatially in leaf margins[J]. The Plant Cell, 2007, 19(9):2719-2735 [17] TSUDA K, ABRAHAM-JUAREZ M J, MAENO A, et al. KNOTTED1 cofactors, BLH12 and BLH14, regulate internode patterning and vein anastomosis in maize[J]. The Plant Cell, 2017, 29(5):1105-1118 [18] YAN F, GAO Y, P ANG X, et al. BEL1-LIKE HOMEODOMAIN4 regulates chlorophyll accumulation, chloroplast development, and cell wall metabolism in tomato fruit[J]. Journal of Experimental Botany, 2020, 71(18):5549-5561 [19] HIRANO K, KONDO M, AYA K, et al. Identification of transcription factors involved in rice secondary cell wall formation[J]. Plant and Cell Physiology, 2013, 54(11):1791-1802 [20] WANG S, YAMAGUCHI M, GRIENENBERGER E, et al. The Class II KNOX genes KNAT3 and KNAT7 work cooperatively to influence deposition of secondary cell walls that provide mechanical support to Arabidopsis stems[J]. The Plant Journal, 2020, 101(2):293-309 [21] FURUMIZU C, A LVAREZ J P, S AKAKIBARA K, et al. Antagonistic roles for KNOX1 and KNOX2 genes in patterning the land plant body plan following an ancient gene duplication[J]. PLoS Genetics, 2015, 11(2):e1004980 [22] TRUERNIT E, HASELOFF J. A role for KNAT class II genes in root development[J]. Plant Signaling & Behavior, 2007, 2(1):10-12 [23] RUPP H M, FRANK M, WERNER T, et al. Increased steady state mRNA levels of the STM and KNAT1 homeobox genes in cytokinin overproducing Arabidopsis thaliana indicate a role for cytokinins in the shoot apical meristem[J]. The Plant Journal, 1999, 18(5):557-563 [24] CHAUDHURY A M, LETHAM S, CRAIG S, et al. amp1-a mutant with high cytokinin levels and altered embryonic pattern, faster vegetative growth, constitutive photomorphogenesis and precocious flowering[J]. The Plant Journal, 1993, 4(6):907-916 [25] CONWAY L J, POETHIG R S. Mutations of Arabidopsis thaliana that transform leaves into cotyledons[J]. Proceedings of the National Academy of Sciences, 1997, 94(19):10209-10214 [26] NADAKUDUTI S S, HOLDSWORTH W L, KLEIN C L, et al. KNOX genes influence a gradient of fruit chloroplast development through regulation of GOLDEN 2-LIKE expression in tomato[J]. The Plant Journal, 2014, 78(6):1022-1033 [27] DI GIACOMO E, LAFFONT C, SCIARRA F, et al. KNAT 3/4/5-like class 2 KNOX transcription factors are involved in Medicago truncatula symbiotic nodule organ development[J]. New Phytologist, 2017, 213(2):822-837 [28] MA Q, WANG N, HAO P, et al. Genome-wide identification and characterization of TALE superfamily genes in cotton reveals their functions in regulating secondary cell wall biosynthesis[J]. BMC Plant Biology, 2019, 19(1):1-20 [29] TAO Y, CHEN M, SHU Y, et al. Identification and functional characterization of a novel BEL1-LIKE homeobox transcription factor GmBLH4 in soybean[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2018, 134(2):331-344 [30] 王中林. 籽粒苋的利用价值及高效种植技术[J]. 科学种养, 2018(11):22-24 [31] 王建丽, 刘杰淋, 朱瑞芬, 等. 28份籽粒苋种质资源的主要农艺性状遗传多样性分析[J]. 草地学报, 2020, 28(4):1050-1059 [32] 周涛, 彭辉, 喻望晨, 等. 千穗谷TCP基因家族生物信息学分析[J]. 草地学报, 2022, 30(4):867-878 [33] 杨辉. 籽粒苋的特性和种植技术[J]. 现代畜牧科技, 2021(10):63-64 [34] 孙鸿良. 高产优质耐旱一年生粮饲兼用作物——籽粒苋[M]. 北京:台海出版社, 2002:33 [35] LIGHTFOOT D J, JARVIS D E, RAMARAJ T, et al. Single-molecule sequencing and Hi-C-based proximity-guided assembly of amaranth (Amaranthus hypochondriacus) chromosomes provide insights into genome evolution[J]. BMC Biology, 2017, 15(1):1-15 [36] 李波, 刘畅, 李红, 等. 外源氯化钙对‘龙牧807’苜蓿幼苗干旱缓解效应分析[J]. 草地学报, 2020, 28(4):990-997 [37] LI X B, FAN X P, WANG X L, et al. The cotton ACTIN1gene is functionally expressed in fibers and participates in fiber elongation[J]. The Plant Cell, 2005, 17(3):859-875 [38] HAMANT O, PAUTOT V. Plant development:a TALE story[J]. Comptes Rendus Biologies, 2010, 333(4):371-381 [39] 张中荣, 吉雪花, 张海英, 等. 辣椒TALE转录因子的生物信息学分析[J]. 分子植物育种, 2020, 18(5):1401-1408 [40] WILLIAM ROY S, GILBERT W. The evolution of spliceosomal introns:patterns, puzzles and progress[J]. Nature Reviews Genetics, 2006, 7(3):211-221 [41] MICHELMORE R W, MEYERS B C. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process[J]. Genome Research, 1998, 8(11):1113-1130. [42] WANG Y, ZHAO Y, YAN M, et al. Genome-wide identification and expression analysis of TALE gene family in Pomegranate (Punica granatum L.)[J]. Agronomy, 2020, 10(6):829 [43] 孙韵雅, 陈佳, 王悦, 等. 根际促生菌促生机理及其增强植物抗逆性研究进展[J]. 草地学报, 2020, 28(5):1203-1215 [44] GONG Z, XIONG L, SHI H, et al. Plant abiotic stress response and nutrient use efficiency[J]. Science China Life Sciences, 2020, 63(5):635-674 [45] ZHAO K, ZHANG X, CHENG Z, et al. Comprehensive analysis of the three-amino-acid-loop-extension gene family and its tissue-differential expression in response to salt stress in poplar[J]. Plant Physiology and Biochemistry, 2019, 136:1-12 [46] ALI H, LIU Y, AZAM S M, et al. Genome wide identification and expression profiles of TALE genes in pineapple (Ananas comosus L)[J]. Tropical Plant Biology, 2019, 12(4):304-317 |