[1] LEWIS G P, SCHRIRE B, MACKINDER B, et al. Legumes of the World[M]. Kew:Royal Botanic Gardens, 2005:1-12 [2] GRAHAM P H, VANCE C P. Legumes:Importance and Constraints to Greater Use[J]. Plant Physiology, 2003, 131(3):872-877 [3] COOK D R. Medicago truncatula-a Model in the Making![J]. Current Opinion in Plant Biology, 1999, 2(4):301-304 [4] FRUGOLI J, HARRIS J. Medicago truncatula on the Move![J]. The Plant Cell, 2001, 13(3):458-463 [5] YOUNG N D, DEBELLé F, OLDROYD G E, et al. The Medicago Genome Provides Insight into the Evolution of Rhizobial Symbioses[J]. Nature, 2011, 480(7378):520-524 [6] BENEDITO V A, TORRES-JEREZ I, MURRAY J D, et al. A Gene Expression Atlas of the Model Legume Medicago truncatula[J]. The Plant Journal, 2008, 55(3):504-513 [7] CARRERE S, VERDIER J, GAMAS P. MtExpress, a Comprehensive and Curated RNAseq-Based Gene Expression Atlas for the Model Legume Medicago truncatula[J]. Plant and Cell Physiology, 2021, 62(9):1494-1500 [8] WEN L, CHEN Y, SCHNABEL E, et al. Comparison of Efficiency and Time to Regeneration of Agrobacterium-Mediated Transformation Methods in Medicago truncatula[J]. Plant Methods, 2019, 15(1):1-10 [9] TAYEH N, BAHRMAN N, DEVAUX R, et al. A High-Density Genetic Map of the Medicago truncatula Major Freezing Tolerance QTL on Chromosome 6 Reveals Colinearity with a QTL Related to Freezing Damage on Pisum sativum Linkage Group VI[J]. Molecular Breeding, 2013, 32(2):279-289 [10] PENMETSA R V, COOK D R. Production and Characterization of Diverse Developmental Mutants of Medicago truncatula[J]. Plant Physiology, 2000, 123(4):1387-1398 [11] WANG H L, LI G M, CHEN R J. Fast Neutron Bombardment (FNB) Mutagenesis for Forward and Reverse Genetic Studies in Plants[J]. Floriculture, Ornamental and Plant Biotechnology, 2006:629-639 [12] TADEGE M, WEN J, HE J, et al. Large-Scale Insertional Mutagenesis Using the Tnt1 Retrotransposon in the Model Legume Medicago truncatula[J]. The Plant Journal, 2008, 54(2):335-347 [13] ROY S, LIU W, NANDETY R S, et al. Celebrating 20 Years of Genetic Discoveries in Legume Nodulation and Symbiotic Nitrogen Fixation[J]. The Plant Cell, 2020, 32(1):15-41 [14] HE L, LIU Y, HE H, et al. A Molecular Framework Underlying the Compound Leaf Pattern of Medicago truncatula[J]. Nature Plants, 2020, 6(5):511-521 [15] FENG F, SUN J, RADHAKRISHNAN G V, et al. A Combination of Chitooligosaccharide and Lipochitooligosaccharide Recognition Promotes Arbuscular mycorrhizal Associations in Medicago truncatula[J]. Nature Communications, 2019, 10(1):1-12 [16] CANAS L A, BELTRAN J P. Functional Genomics in Medicago truncatula[M]. New York:Humana New York, 2018:315-337 [17] DE BRUIJN. The Model Legume Medicago truncatula[M].New Jersey:Wiley-Blackwell, 2019:317-330 [18] 雷艳芳, 魏臻武, 杨占花, 等. 蒺藜苜蓿种子产量相关性状的遗传分析[J]. 草地学报, 2009,17(3):337-342 [19] 周玲芳, 尚骁尧, 张铁军, 等. 蒺藜苜蓿(Medicago truncatula)叶片衰老的转录组分析[J]. 草地学报, 2021, 29(10):2158-2168 [20] WANG N, XIA X, JIANG T, et al. In Planta Haploid Induction by Genome Editing of DMP in the Model Legume Medicago truncatula[J]. Plant Biotechnology Journal, 2022, 20(1):22-24 [21] DONG W, ZHU Y, CHANG H, et al. An SHR-SCR Module Specifies Legume Cortical Cell Fate to Enable Nodulation[J]. Nature, 2021, 589(7843):586-590 [22] JIANG S, JARDINAUD M F, GAO J, et al. NIN-Like Protein Transcription Factors Regulate Leghemoglobin Genes in Legume Nodules[J]. Science, 2021, 374(6567):625-628 [23] CHENG X, WEN J Q, TADEGE M, et al. Plant Reverse Genetics[M]. Totowa:Humana Press, 2011:179-190 [24] ROGERS C, WEN J, CHEN R, et al. Deletion-Based Reverse Genetics in Medicago truncatula[J]. Plant Physiology, 2009, 151(3):1077-1086 [25] XU Y, WANG H, LU Z, et al. Developmental Analysis of the GATA Factor HANABA TARANU Mutants in Medicago truncatula Reveals Their Roles in Nodule Formation[J]. Frontiers in Plant Science, 2021, 12:616776 [26] ZHAO W, BAI Q, ZHAO B, et al. The Geometry of the Compound Leaf Plays a Significant Role in the Leaf Movement of Medicago truncatula Modulated by mtdwarf4a[J]. New Phytologist, 2021, 230(2):475-484 [27] CRAWFORD E J, LAKE A W, BOYCE K G. Breeding Annual Medicago Species for Semiarid Conditions in Southern Australia[J]. Advances in Agronomy, 1989, 42:399-437 [28] CHABAUD M, LICHTENZVEIG J, ELLWOOD S, et al. Vernalization, Crossings and Testing for Pollen Viability. The Medicago truncatula Handbook[M]. Ardmore:Samuel Roberts Noble Foundation, 2006:1-13 [29] TAYLOR M, BLAYLOCK L, NAKASHIMA J, et al. Medicago truncatula Hybridization:Supplemental Videos. Medicago truncatula Handbook[M]. Ardmore:Samuel Roberts Noble Foundation, 2011:1-5 [30] VEERAPPAN V, KADEL K, ALEXIS N, et al. Keel Petal Incision:A Simple and Efficient Method for Genetic Crossing in Medicago truncatula[J]. Plant Methods, 2014, 10(1):11 [31] DE BRUIJN F. The Model Legume Medicago truncatula[M]. Medford:John Wiley & Sons, Inc., 2019:1027-1033 [32] XI J, CHEN Y, NAKASHIMA J, et al. Medicago truncatula esn1 Defines a Genetic Locus Involved in Nodule Senescence and Symbiotic Nitrogen Fixation[J]. Molecular Plant-Microbe Interactions, 2013, 26(8):893-902 [33] ZENG H, XIA C, ZHANG C, et al. A Simplified Hydroponic Culture of Arabidopsis[J]. Bio-protocol, 2018, 20:e3121 |