[1] YUAN N M, LU Z H. Warming reduces predictability[J]. Nature Climate Change, 2020, 10:13-14 [2] NAHLIK A M, FENNESSY M S. Carbon storage in US wetlands[J]. Nature Communications, 2016, 7(6593):13835 [3] TEMMINK R J M, LAMERS L P M, ANGELINI C, et al. Recovering wetland biogeomorphic feedbacks to restore the world's biotic carbon hotspots[J]. Science, 2022, 376:eabn1479 [4] OSLAND M J, ENWRIGHT N M, DAY R H, et al. Beyond just sea-level rise:considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change[J]. Global Change Biology, 2016, 22(1):1-11 [5] 宋娴, 柴瑜, 徐文印, 等. 黄河源区高寒湿地土壤团聚体有机碳矿化特征及其温度敏感性[J]. 草地学报, 2024, 32(7):2205-2213 [6] 潘保田, 李吉均. 青藏高原:全球气候变化的驱动机与放大器─Ⅲ.青藏高原隆起对气候变化的影响[J]. 兰州大学学报, 1996, 32(1):108-115 [7] BAI R, XI D, HE J Z, et al. Activity, abundance and community structure of anammox bacteria along depth profiles in three different paddy soils[J]. Soil Biology and Biochemistry, 2015, 91:212-221 [8] CHEN H, ZHU Q A, PENG C H, et al.The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau[J]. Global Change Biology, 2013, 19(10):2940-2955 [9] 程小云, 孙小丹, 王新源, 等. 高寒草甸主要毒杂草生态策略对高原鼠兔干扰的响应[J]. 草地学报, 2024, 32(8):2459-2468 [10] LI Z, QU H, LI L, et al. Effects of climate change on vegetation dynamics of the Qinghai-Tibet Plateau, a causality analysis using empirical dynamic modeling[J]. Heliyon, 2023, 9(5):e16001 [11] FU F, LI J, LI Y, et al. Simulating the effect of climate change on soil microbial community in an Abies georgei var. smithii forest[J]. Frontiers in Microbiology, 2023, 14:1189859 [12] O'NEILL B C, OPPENHEIMER M, WARREN R, et al. IPCC reasons for concern regarding climate change risks[J]. Nature Climate Change, 2017, 7(1):28-37 [13] GONG S W, ZHANG T, GUO R, et al. Response of soil enzyme activity to warming and nitrogen addition in a meadow steppe[J]. Soil Research, 2015, 53:242-252 [14] HARTLEY I P, HILL T C, CHADBURN S E, et al. Temperature effects on carbon storage are controlled by soil stabilisation capacities[J]. Nature Communications, 2021, 12(1):6713 [15] DE NIJS E A, HICKS L C, LEIZEAGA A, et al. Soil microbial moisture dependences and responses to drying-rewetting:The legacy of 18 years drought[J]. Global Change Biology, 2019, 25(3):1005-1015 [16] JI X M, LIU M H, YANG J L, et al. Meta-analysis of the impact of freeze-thaw cycles on soil microbial diversity and C and N dynamics[J]. Soil Biology and Biochemistry, 2022, 168:108608 [17] CASTRO H F, CLASSEN A T, AUSTIN E E, et al. Soil microbial community responses to multiple experimental climate change drivers[J]. Applied and Environmental Microbiology, 2010, 76(4):999-1007 [18] CHEN I C, HILL J K, OHLEMULLER R, et al. Rapid range shifts of species associated with high levels of climate warming[J]. Science, 2011, 333:1024-1026 [19] DOVE N C, TORN M S, HART S C, et al. Metabolic capabilities mute positive response to direct and indirect impacts of warming throughout the soil profile[J]. Nature Communications, 2021, 12(1):2089 [20] FENG J, WANG C, LEI J, et al. Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community[J]. Microbiome, 2020, 8(1):3 [21] KARHU K, AUFFRET M D, DUNGAIT J A, et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response[J]. Nature, 2014, 513:81-84 [22] ZHANG N, XIA J, YU X, et al. Soil microbial community changes and their linkages with ecosystem carbon exchange under asymmetrically diurnal warming[J]. Soil Biology and Biochemistry, 2011, 43:2053-2059 [23] OLIVERIO AM, BRADFORD MA, FIERER N. Identifying the microbial taxa that consistently respond to soil warming across time and space[J]. Global Change Biology, 2017, 23(5):2117-2129 [24] NOWAK ME, BEULIG F, VON FISCHER J, et al. Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette[J]. Biogeosciences, 2015, 12(23):7169-7183 [25] LYNN TM, GE T, YUAN H, et al. Soil carbon-fixation rates and associated bacterial diversity and abundance in three natural ecosystems[J]. Microbial Ecology, 2017, 73(3):645-657 [26] GUO G X, KONG W D, LIU J B, et al. Diversity and distribution of autotrophic microbial community along environmental gradients in grassland soils on the Tibetan Plateau[J]. Applied Microbiology and Biotechnology, 2015, 99(20):8765-8776 [27] MA X Y, WANG T X, ZHOU S, et al. Long-term nitrogen deposition enhances microbial capacities in soil carbon stabilization but reduces network complexity[J]. Microbiome, 2022, 10:144 [28] ZHAO K, KONG W D, WANG F, et al. Desert and steppe soils exhibit lower autotrophic microbial abundance but higher atmospheric CO2-fixation capacity than meadow soils[J]. Soil Biology and Biochemistry, 2018, 127:230-238 [29] 高静, MUHANMMAD S, 岳琳艳, 等. 藏北高原草甸土壤固碳微生物群落特征随海拔和季节的变化[J]. 生态学报, 2018, 38(11):3816-3824 [30] WATSON G M, TABITA F R. Microbial ribulose 1, 5-bisphosphate carboxylase/oxygenase:a molecule for phylogenetic and enzymological investigation[J]. FEMS Microbiology Letters, 1997, 146(1):13-22 [31] KONG W, DOLHI J M, CHIUCHIOLO A, et al. Evidence of form II RubisCO (cbbM) in a perennially ice-covered Antarctic lake[J]. FEMS Microbiology Ecology, 2012, 82(2):491-500 [32] CRAFT C, VYMAZAL J, KR ÖPFELOVÁ L. Carbon sequestration and nutrient accumulation in floodplain and depressional wetlands[J]. Ecological Engineering, 2018, 114:137-145 [33] MISTRY AN, GANTA U, CHAKRABARTY J, et al. A review on biological systems for CO2 sequestration:organisms and their pathways[J]. Environmental Progress and Sustainable Energy, 2019, 38:127-136 [34] LIU B L, HOU L J, ZHENG Y L, et al. Dark carbon fixation in intertidal sediments:Controlling factors and driving microorganisms[J]. Water Research, 2022, 216:118381 [35] LIAO Q H, LU C, YUAN F, et al. Soil carbon-fixing bacterial communities respond to plant community change in coastal salt marsh wetlands[J]. Applied Soil Ecology, 2023, 189:104918 [36] WANG X Y, LI W, XIAO Y, et al. Abundance and diversity of carbon-fixing bacterial communities in karst wetland soil ecosystems[J]. Catean, 2021, 105418 [37] PENG W T, WANG Y, ZHU X X, et al. Distribution characteristics and diversities of cbb and coxL genes in paddy soil profiles from Southern China[J]. Pedosphere, 2021, 954-963 [38] 章妮, 暴涵, 左弟召, 等. 青海湖不同类型高寒湿地产甲烷菌群落特征[J]. 应用与环境生物学报, 2022, 28(2):283-289 [39] 章妮, 陈克龙, 祁闻, 等. 模拟增温对青海湖高寒湿地产甲烷菌群落特征的影响[J]. 生态科学, 2023, 42(4):163-170 [40] LI N, WANG B R, ZHOU Y, et al. Response of the C-fixing bacteria community to precipitation changes and its impact on bacterial necromass accumulation in semiarid grassland[J]. Journal of Environmental Management, 2024, 354:120289 [41] WANG Z Y, XIN Y Z, GAO D M, et al. Microbial community characteristics in a degraded wetland of the Yellow River Delta[J]. Pedosphere, 2010, 20(4):466-478 [42] YUAN H Z, GE T D, CHEN C Y, et al. Significant role for microbial autotrophy in the sequestration of soil carbon[J]. Applied and Environmental Microbiology, 2012, 78(7):2328-2336 [43] PAPATHEODOROU E M, ARGYROPOULOU M D, STAMOU G P. The effects of large- and small-scale differences in soil temperature and moisture on bacterial functional diversity and the community of bacterivorous nematodes[J]. Applied Soil Ecology, 2004, 25(1):37-49 [44] FERRY J G, HOUSE C H. The stepwise evolution of early life driven by energy conservation[J]. Molecular Biology and Evolution, 2006, 23(6):1286-1292 [45] TABITA F R, HANSON T E, LI H, et al. Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs[J]. Microbiology and Molecular Biology Reviews, 2007, 71(4):576-599 [46] YU C Q, HAN F S, FU G. Effects of 7 years experimental warming on soil bacterial and fungal community structure in the Northern Tibet alpine meadow at three elevations[J]. Science of the Total Environment, 2019, 655:814-822 [47] BÅÅTH E. Estimation of fungal growth rates in soil using 14C-acetate incorporation into ergosterol[J]. Soil Biology and Biochemistry, 2001, 33:2011-2018 [48] HU S, VAN BRUGGEN AHC. Microbial dynamics associated with multiphasic decomposition of 14C-labeled cellulose in soil[J]. Microbial Ecology, 1997, 33(2):134-143 [49] WANG X, LI W, CHENG A, et al. Community characteristics of autotrophic CO2-fixing bacteria in karst wetland groundwaters with different nitrogen levels[J]. Frontiers in Microbiology, 2022, 13:949208 [50] 王哲. 青藏高原草甸土壤中固碳微生物群落多样性及其影响因素[D]. 北京:中国地质大学, 2019:77-78 [51] 王北辰. 青藏高原北部湖泊沉积物固碳微生物群落结构与固碳功能及其环境影响因素研究[D]. 武汉:中国地质大学, 2019:54-56 [52] LU J, QIU K C, LI W X, et al. Tillage systems influence the abundance and composition of autotrophic CO2-fixing bacteria in wheat soils in North China[J]. European Journal of Soil Biology, 2019, 93:103086 [53] XIAO H B, LI Z W, DENG CX, et al. Autotrophic bacterial community and microbial CO2 fixation respond to vegetation restoration of eroded agricultural land[J]. Ecosystems, 2019, 22(8):1754-1766 [54] LENK S, ARNDS J, ZERJATKE K, et al. Novel groups of Gammaproteobacteria catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment[J]. Environmental Microbiology, 2011, 13(3):758-774 [55] KHAN A, KONG W, KHAN S, et al. Diversity and succession of chemolithoautotrophic microbial community along a recently deglaciation chronosequence on the Tibetan Plateau[J]. FEMS Microbiology Ecology, 2023, 99(7):fiad066 [56] ZHANG W, LI J, STRUIK P C, et al. Recovery through proper grazing exclusion promotes the carbon cycle and increases carbon sequestration in semiarid steppe[J]. Science of the Total Environment, 2023, 892:164423 [57] YOUSUF B, KUMAR R, MISHRA A, et al. Unravelling the carbon and sulphur metabolism in coastal soil ecosystems using comparative cultivation-independent genome-level characterisation of microbial communities[J]. PLoS One, 2014, 9(9):e107025 [58] GARRITY G M, BELL J A, LILBURN T. Bergey’s Manual of systematic bacteriology[M]. Boston MA:Springer, 2005, 131-210 [59] NOSALOVA L, MEKADIM C, MRAZEK J, et al. Thiothrix and Sulfurovum genera dominate bacterial mats in Slovak cold sulfur springs[J]. Environmental Microbiome, 2023, 18(1):72 [60] ENGELHARDT I C, WELTY A, BLAZEWICZ S J, et al. Depth matters:effects of precipitation regime on soil microbial activity upon rewetting of a plant-soil system[J]. Isme Journal, 2018, 12(4):1061-1071 [61] LIU Y, YAN Y, FU L, et al. Metagenomic insights into the response of rhizosphere microbial to precipitation changes in the alpine grasslands of northern Tibet[J]. Science of the Total Environment, 2023, 892:164212 [62] YUAN H, GE T, WU X, et al. Long-term field fertilization alters the diversity of autotrophic bacteria based on the ribulose-1, 5-biphosphate carboxylase/oxygenase (RubisCO) large-subunit genes in paddy soil[J]. Applied Microbiology and Biotechnology, 2012, 95(4):1061-1071 [63] LAUBER C L, HAMADY M, KNIGHT R, et al. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale[J]. Applied and Environmental Microbiology, 2009, 75(15):5111-5120 [64] LIU D, YANG Y, AN S S, et al. The biogeographical distribution of soil bacterial communities in the Loess Plateau as revealed by high-throughput sequencing[J]. Frontiers in Microbiology, 2018, 9:2456 [65] BAHRAM M, HILDEBRAND F, FORSLUND S K, et al. Structure and function of the global topsoil microbiome[J]. Nature, 2018, 560(7717):233-237 |