[1] SUN D Y,JI Z H,WANG Y K,et al. Assessment and forecasting of water ecological security and obstacle factor diagnosis in the Hexi Corridor of Northwest China[J]. Scientific Reports,2024,14(1):23507 [2] FAROOQ M,WAHID A,ZAHRA N,et al. Recent advances in plant drought tolerance[J]. Journal of Plant Growth Regulation,2024,43(10):3337-3369 [3] KAPOOR D,BHARDWAJ S,LANDI M,et al. The impact of drought in plant metabolism:how to exploit tolerance mechanisms to increase crop production[J]. Applied Sciences,2020,10(16):5692 [4] 张静鸽,田福平,苗海涛,等.水分胁迫及复水过程4种牧草形态及其生理特征表达[J].干旱区研究,2020,37(1):193-201 [5] NAKANISHI K,FUJIKI H,OZAKI K,et al. Decrease of cytokinin flux from roots enhances degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase:a mechanism of the accelerated decrease of leaf photosynthesis with senescence under soil moisture stress in rice (Oryza sativa L.)[J]. Plant and Soil,2024,496(1):391-411 [6] 杨鑫光,傅华,李晓东.干旱胁迫对霸王水分生理特征及细胞膜透性的影响[J].西北植物学报,2009,29(10):2076-2083 [7] 赵广兴,徐天渊,李王成,等.白茎盐生草幼苗对干旱胁迫的响应研究[J].干旱区资源与环境,2021,35(4):195-202 [8] 吴雨涵,刘文辉,刘凯强,等.干旱胁迫对燕麦幼苗叶片光合特性及活性氧清除系统的影响[J].草业学报,2022,31(10):75-86 [9] HU Y,YANG L,GAO C,et al. A comparative study on the leaf anatomical structure of Camellia oleifera in a low-hot valley area in Guizhou Province,China[J]. Plos One,2022,17(1):e0262509 [10] 何凤,杜红岩,刘攀峰,等.干旱胁迫对杜仲叶片结构特征的影响[J].植物研究,2021,41(6):947-956 [11] 赵尧尧,刘美君,张政,等.低温和干旱双重胁迫对紫花苜蓿叶片光系统Ⅱ的影响[J].草地学报,2024,32(4):1120-1130 [12] 于思敏,罗永忠,康芳明,等.干旱胁迫对紫花苜蓿生长和叶绿素荧光特性的影响[J].草地学报,2023,31(6):1762-1771 [13] 胡营,楚海家,李建强. 4个花苜蓿居群叶片解剖结构特征及其可塑性对不同水分处理的响应[J].植物科学学报,2011,29(2):218-225 [14] 王江银,徐婉宁,苏洋,等.干旱胁迫下紫花苜蓿和黄花苜蓿实生苗叶片形态及解剖结构变化[J].华北农学报,2023,38(S1):228-236 [15] 贾蓉,庞妙甜,杜利霞,等. 5个苜蓿品种种子萌发期干旱耐受性研究[J].中国草地学报,2018,40(5):114-119 [16] 张志莹,侯文静,吕卫东,等.中苜一号紫花苜蓿对混合盐和碱胁迫的生理响应[J].草原与草坪,2023,43(2):126-132 [17] 李跃,毕舒贻,万修福,等.紫花苜蓿幼苗生长及其叶片形态对水分胁迫的响应[J].草地学报,2017,25(6):1232-1238 [18] 韩志顺,郑敏娜,梁秀芝,等.干旱胁迫对不同紫花苜蓿品种形态特征和生理特性的影响[J].中国草地学报,2020,42(3):37-43 [19] 尉春雪,何飞,许蕾,等.紫花苜蓿甘氨酸脱羧酶H-蛋白基因MsGDC-H1功能分析[J].草业学报,2022,31(12):95-105 [20] 于思敏.干旱胁迫对不同紫花苜蓿品种形态及生理特性的影响[D].兰州:甘肃农业大学,2023:6-8 [21] ANTOLÍN M C,YOLLER J,SÁNCHEZ-DÍAZ M. Effects of temporary drought on nitrate-fed and nitrogen-fixing alfalfa plants[J]. Plant Science,1995,107(2):159-165 [22] MARTÍNEZ‐VILALTA J,POYATOS R,AGUADÉ D,et al. A new look at water transport regulation in plants[J]. New Phytologist,2014,204(1):105-115 [23] 田晨霞,张咏梅,马晖玲.草地早熟禾胚胎结构石蜡切片制作方法初探[J].草业科学,2013,30(12):1980-1986 [24] 冯树林,周婷,王军利.胡枝子幼苗不同生长阶段叶水势对干旱-复水的响应特征[J].草地学报,2023,31(7):2077-2085 [25] 刘诗莹,鲁绍伟,李少宁,等.北京市七种园林树种叶水势动态特征及其影响因素分析[J].北方园艺,2022(7):75-82 [26] 南思睿,罗永忠,于思敏,等.水分胁迫对紫花苜蓿叶片水势及生物量分配的影响[J].草原与草坪,2022,42(6):63-70 [27] 冯树林,李博渊,吕国利,等.紫穗槐幼苗不同生长阶段叶水势对干旱胁迫与复水的响应特征[J].草地学报,2020,28(5):1363-1371 [28] MANANDHAR A,PICHACO J,MCADAM S A M. Abscisic acid increase correlates with the soil water threshold of transpiration decline during drought[J]. Plant, Cell& Environment,2024,47(12):5067-5075 [29] SHAFQAT W,MAZROU Y S A,SAMI-UR-REHMAN, et al. Effect of three water regimes on the physiological and anatomical structure of stem and leaves of different Citrus rootstocks with distinct degrees of tolerance to drought stress[J]. Horticulturae,2021,7(12):554 [30] PATANÈ C,SCORDIA D,TESTA G,et al. Physiological screening for drought tolerance in Mediterranean long-storage tomato[J]. Plant Science,2016,249:25-34 [31] ALTAF A,GULL S,ZHU X K,et al. Study of the effect of PEG-6000 imposed drought stress on wheat (Triticum aestivum L.) cultivars using relative water content (RWC) and proline content analysis[J]. Pakistan Journal of Agricultural Research,2021,58(1):357-367 [32] MASHAVA V,SPASOVA-APOSTOLVA V,AZIZ S,et al. Variations in proline accumulation and relative water content under water stress characterize bean mutant lines (P. vulgaris L.)[J]. Bulgarian Journal of Agricultural Science,2022,28(3):430-436 [33] 陈雪峰,景晨娟,赵习平,等.植物叶片组织结构在抗逆研究中的应用进展[J].河北农业科学,2018,22(3):50-53 [34] 冯周德,杨欢,王晨轩,等.干旱胁迫下玫瑰生理响应研究进展[J].现代农业科技,2023(2):109-113 [35] YANG X Y,LU M Q,WANG Y F,et al. Response mechanism of plants to drought stress[J]. Horticulturae,2021,7(3):50 [36] 岑慧芳,钱文武,朱慧森,等.干旱胁迫对草地早熟禾叶片显微结构和光合特征的影响[J].草地学报,2023,31(5):1368-1377 [37] HE X S,XU L C,PAN C,et al. Drought resistance of camellia oleifera under drought stress:changes in physiology and growth characteristics[J]. PLoS One,2020,15(7):e0235795 [38] 党晓宏,高永,虞毅,等. 3种滨藜属牧草苗期叶片解剖结构及生理特性对干旱的响应[J].西北植物学报,2014,34(5):976-987 [39] 冯鹏,孙力,申晓慧,等.不同诱变处理对苜蓿叶片细胞显微和超微结构的影响[J].草业学报,2018,27(6):72-80 [40] 陈旭,刘洪凯,王强,等.鲁东丘陵同质生境中11个树种叶解剖学特性比较[J].应用与环境生物学报,2019,25(3):655-664 [41] LI Z D,YU X X,JIA G D. The anatomical structure of woody plants in arid habitats is closely related to nonstructural carbohydrates storage[J]. Forest Ecosystems,2022,9:100073 [42] 李鸿雁,李志勇,师文贵,等. 6种豆科牧草叶片解剖性状与抗旱性关系研究[J].西北植物学报,2010,30(10):1989-1994 [43] SACK L,SCOFFONI C,MCKOWN A D,et al. Developmentally based scaling of leaf venation architecture explains global ecological patterns[J]. Nature Communications,2012,3(5):837 [44] 李鸿雁,李志勇,师文贵,等.内蒙古扁蓿豆叶片解剖性状与抗旱性的研究[J].草业学报,2012,21(3):138-146 [45] ZHANG F J,ZHANG K K,DU C Z,et al. Effect of drought stress on anatomical structure and chloroplast ultrastructure in leaves of sugarcane[J]. Sugar Tech,2015,17(1):41-48 [46] 翟晓巧,任媛媛,刘艳萍,等.8种落叶乔木抗旱性相关叶片的解剖结构[J].东北林业大学学报,2013,41(9):42-45 [47] 许少祺.野豌豆属3种植物的形态解剖学研究[D].长春:吉林农业大学,2021:48 |