›› 2014, Vol. 22 ›› Issue (2): 234-242.DOI: 10.11733/j.issn.1007-0435.2014.02.004
芦光新1, 陈秀蓉2, 王军邦3, 吴楚4
收稿日期:
2013-06-29
修回日期:
2013-11-10
出版日期:
2014-04-15
发布日期:
2014-04-21
通讯作者:
陈秀蓉, 王军邦
作者简介:
芦光新(1974-),男,青海湟中人,博士,教授,主要从事草地微生物多样性及功能利用研究,E-mail:lugx74@qq.com
基金资助:
LU Guang-xin1, CHEN Xiu-rong2, WANG Jun-bang3, WU Chu4
Received:
2013-06-29
Revised:
2013-11-10
Online:
2014-04-15
Published:
2014-04-21
摘要: 由于自然因素或人类因素驱动,以CO2浓度增加、气候变暖、大气氮沉降等为主要特征的生态效应对草地生态系统产生了复杂的影响。草丛-地境界面中草地植被和土壤环境对全球变化的响应十分敏感,土壤微生物与草地植被和土壤环境之间的关系密切,不同层面上微生物对全球变化的响应特征不同。气候变化的各个因素对土壤微生物有直接或间接的作用,且目前作用机制尚不明确。本文综述了全球变化因子,包括CO2浓度、气温及氮沉降等因素对草地土壤微生物影响的相关研究进展,在此基础上分析评述了全球变化对草地生态系统微生物多样性的影响及微生物的响应机制,并对未来研究需关注的问题和方向进行了探讨和展望。
中图分类号:
芦光新, 陈秀蓉, 王军邦, 吴楚. 气候变化对青藏高原高寒草地生态系统草丛-地境界面微生物的影响研究进展[J]. , 2014, 22(2): 234-242.
LU Guang-xin, CHEN Xiu-rong, WANG Jun-bang, WU Chu. Research Progresses on the Effects of Global Change on the Microbes of Plant-site Interface in Alpine Grassland Ecosystem[J]. , 2014, 22(2): 234-242.
[1] Clark W C, Holling C S. Sustainable development of the biosphere:Human activities and global change [C]//Malone T F, Roederer, eds. Global change. Cambridge:Cambridge University Press,1985:474-490 [2] Price M F. Global change:Defining the Ill-defined [J].Environment,1989,31(8):18-20,42-44 [3] Jobbágy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation [J].Ecological Applications,2000,10(2):423-436 [4] 李博.我国草地资源现况及其管理对策[J].大自然探索,1997,16(1):12-14 [5] 徐柱.面向21世纪的中国草地资源[J].中国草地,1998,20(5):2-9 [6] 任继周,侯扶江.草业科学的多维结构[J].草业学报,2010,19(3):1-5 [7] Parry M, Canziani O, Palutikof J, et al. Climate change 2007: Impacts, adaptation and vulnerability[M]. Cambrige (United Kingdom), New York (USA).Intergovernmental Panel on Climate Change,2007 [8] Beniston M, Diaz H F, Bradley R S. Climatic change at high elevation sites: An overview [J]. Climatic Change,1997,36(3/4):233-251 [9] Thomas C D, Cameron A, Green R E, et al. Extinction risk from climate change [J].Nature,2004,427(6970):145-148 [10] Theurillat J P, Guisan A. Potential impact of climate change on vegetation in the European Alps:A review[J].Climatic Change,2001,50(1/2):77-109 [11] Korner C. Alpine plant life:Functional plant ecology of high mountain ecosystems [M]. 2nd ed. New York:Springer Berlin Heidel berg,2003 [12] 贺金生,王政权,方精云.全球变化下的地下生态学:问题与展望[J].科学通报,2004,49(13):1226-1233 [13] Brussaard L, De Ruiter P C, Brown G G. Soil biodiversity for agricultural sustainability[J].Agriculture, Ecosystems and Environment,2007,121(3):233-244 [14] Bissett A, Burke C, Cook P L M, et al. Bacterial community shifts in organically perturbed sediments[J]. Environmental Microbiology,2007,9(1):46-60 [15] Myers R T, Zak D R, White D C, et al.Landscape-level patterns of microbial community composition and substrate use in upland forest ecosystems[J].Soil Science Society of America Journal,2001,65(2):359-367 [16] Elizabeth K, Costello S, Schmidt K. Microbial diversity in alpine tundra wet meadow soil:Novel Chloroflexi from a cold,water-saturated environment [J].Environmental Microbiology,2006,8(8):1471-1486 [17] Ika D, Franz Z, Axel M, et al.Microbial community composition and activity in different Alpine vegetation zones[J]. Soil Biology and Biochemistry,2010,42(2):155-161 [18] Li N, Wang G, Gao Y, et al.Warming effects on plant growth, soil nutrients, microbial biomass and soil enzymes activities of two alpine meadows in Tibetan plateau[J].Journal of Ecology,2011,59(1):25-35 [19] Zheng Y, Yang W, Sun X, et al.Methanotrophic community structure and activity under warming and grazing of alpine meadow on the Tibetan Plateau [J].Applied and Environmental Microbiology,2012,93(5):2193-2203 [20] Ellen H E, Daniel LHernández, Jae R Pasari,et al.Response of soil microbial activity to grazing, nitrogen deposition, and exotic cover in a serpentine grassland [J].Plant Soil,2013,366(1/2):671-682 [21] Djukic I, Zehetner F, Watzinger A, et al. In situ carbon turnover dynamics and the role of soil microorganisms therein: 4 climate warming study in an Alpine ecosystem [J].FEMS Microbiology Ecology,2013,83(1):112-124 [22] 夏北成.植被对土壤微生物群落结构的影响[J].应用生态学报,1998,9(3):196-300 [23] Xiao H L, Zheng X J. Effects of plant diversity on soil microbes [J].Soil and Environmental Sciences,2001,10(3):238-241 [24] He Z, Piceno Y, Deng Y, et al. The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide[J].The International Society for Microbial Ecology,2012,6(2):259-272 [25] Niklaus P, Alphei J, Ebersberger D, et al. Six years of in situ CO2 enrichment evoke changes in soil structure and soil biota of nutrient-poor grassland [J].Global Change Biology,2003,9(4):585-600 [26] Ebersberger D, Wermbter N, Niklaus P A, et al.Effects of long term CO2 enrichment on microbial community structure in calcareous grassland [J].Plant and Soil,2004,264(1):313-323 [27] Kelley A M, Fay P A, Polley H W, et al.Atmospheric CO2 and soil extracellular enzyme activity:A meta-analysis and CO2 gradient experiment [J].Ecosphere,2011,2(8):1-20 [28] Jackson R B,Cook C W,Pippen J S,et al.Increased belowground biomass and soil CO2 fluxes after a decade of carbon dioxide enrichment in a warm-temperate forest[J].Ecology,2009,90(12):3352-3366 [29] Niu S,Wu M,Han Y,et al.Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe[J].New Phytologist,2008,177(1):209-219 [30] Pankratov T A, Ivanova A O, Dedysh S N, et al.Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat [J].Environmental Microbiology,2011,13(7):1800-1814 [31] Malchair S, De Boeck H J, Lemmens C M H M, et al. Diversity-function relationship of ammonia-oxidizing bacteria in soils among functional groups of grassland species under climate warming [J].Applied Soil Ecology,2010,44(1):15-23 [32] Horz H P, Rich V, Avrahami S, et al. Methane-oxidizing bacteria in a California upland grassland soil:Diversity and response to simulated global change[J].Applied and Environmental Microbiology,2005,71(5):2642-2652 [33] 米亮,王光华,金剑,等.黑土微生物呼吸及群落功能多样性对温度的响应[J].应用生态学报,2010,21(6):1485-1491 [34] Kandeler E, Tscherko D, Bardgett R D, et al.The response of soil microorganisms and roots to elevated CO2 and temperature in a terrestrial model ecosystem [J].Plant and Soil,1998,202(2):251-262 [35] Bardgett R D, Kandeler E, Tscherko D, et al.Below-ground microbial community development in a high temperature world [J].Oikos,1999,85(2):193-203 [36] 芦光新,刘雯,卞静,等.一株来自东祁连山高寒草地土壤纤维素分解真菌培养特性的研究[J].草原与草坪,2011,30(3):50-55 [37] Scharpenseel H W, Schomaker M, Ayoub A. Soils on a warmer earth:Effects of expected climate change on soil processes,with emphasis on the tropics and subtropics[M].New York, USA: Elsevier Science Ltd,1990 [38] Galloway J N, Cowling E B. Reactive nitrogen and the world:200 years of change [J].Ambiology,2002,31(2):64-71 [39] Matson P A, Lohse K A, Hall S J. The globalization of nitrogen deposition: Consequences for terrestrial ecosystems [J].Ambiology,2002,31(2):113-119 [40] Zhang N L, Wan S Q, Li L H, et al.Impacts of urea N addition on soil microbial community in a semi-arid temperate steppe in northern China [J].Plant Soil,2008,311(1/2):19-28 [41] Bardgett R D, Lovell R D, Hobbs P J, et al.Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands [J].Soil Biology and Biochemistry,1999,31(7):1021-1030 [42] Frey S D, Knorr M, Parrent J L, et al.Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests [J]. Forest Ecology and Management,2004,196(1):159-171 [43] 薛璟花,莫江明,李炯,等.氮沉降增加对土壤微生物的影响[J].生态环境,2005,14(5):777-782 [44] 刘蔚秋,刘滨扬,王江,等.不同环境条件下土壤微生物对模拟大气氮沉降的响应[J].生态学报,2010,30(7):1691-1698 [45] Yevdokimov I, Gattinger A, Buegger F, et al. Changes in microbial community structure in soil as a result of different amounts of nitrogen fertilization[J].Biology and Fertility of Soils,2008,44(8):1103-1106 [46] Hobbie S E, Vitousek P M. Nutrient limitation of decomposition in Hawaiian forests [J].Ecology,2000,81(7):1867-1877 [47] Berg B. Litter decomposition and organic matter turnover in northern forest soils [J].Forest Ecology and Management,2000,133(1/2):13-22 [48] Fog K. The effect of added nitrogen on the rate of decomposition of organic matter [J].Biological Reviews of the Cambridge Philosophical Society,1988,63(3):433-462 [49] Deforest J L, Zaka D R, Pregitzer K S, et al. Atmospheric nitrate deposition, microbial community composition, and enzyme activity in Northern Hardwood forests [J].Soil Science Society America,2004,68(1):132-138 [50] Di H J, Cameron K C, Shen J P, et al. Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions [J].FEMS Microbiology Ecology,2010,72(3):386-394 [51] 张燕,崔学民,樊明寿.大气氮沉降及其对草地生物多样性的影响[J].草业科学,2007,24(7):12-17 [52] Lovell R D, Jarvis S C, Bardgett R D. Soil microbial biomass and activity in long-term grassland: Effects of management changes[J]. Soil Biology and Biochemistry,1995,27(7):969-975 [53] Wallenstein M D, Mcnulty S, Fernandez I J, et al.Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments [J].Forest Ecology and Management,2006,222(1/3):459-468 [54] Fisk M C, Fahey T J. Microbial biomass and nitrogen cycling responses to fertilization and litter removal in young northern hardwood forests [J].Biogeochemistry,2001,53(2):201-223 [55] Compton J E, Watruda L S, Porteousa L A, et al. Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest [J].Forest Ecology and Management,2004,196(1):143-158 [56] Boxman A W, Blanck K, Brandrud T E, et al. Vegetation and soil biota response to experimentally changed nitrogen inputs in coniferous forest ecosystems of the NITREX project[J]. Forest Ecology and Management,1998,101(1/3):65-79 [57] Imberger K T, Chiu C Y. Spatial changes of soil fungal and bacterial biomass from a sub-alpine coniferous forest to grassland in a humid, sub-tropical region [J].Biology and Fertility of Soils,2001,33(2):105-110 [58] 刘洋,张健,闫帮国,等.青藏高原东缘高山森林-苔原交错带土壤微生物生物量碳、氮和可培养微生物数量的季节动态[J].植物生态学报,2012,36(5):382-392 [59] West A W. Improvement of the selective respiratory inhibition technique to measure eukaryote: Prokaryote ratios in soils [J].Journal of Microbiological Methods,1986,5(3/4):125-138 [60] Carney K M, Hungate B A, Drake B G, et al. Altered soil microbial community at elevated CO2 leads to loss of soil carbon [J].Proceedings of the National Academy of Sciences of USA,2007,104(12):4990-4995 [61] Kandeler E, Mosier A R, Morgan J A, et al. Transient elevation of carbon dioxide modifies the microbial community composition in a semi-arid grassland [J].Soil Biology and Biochemistry,2008,40(1):162-171 [62] Zhang W, Parker K M, Luo Y, et al. Soil microbial responses to experimental warming and clipping in a tallgrass prairie [J].Global Change Biology,2005,11(2):266-277 [63] Kennedy N, Brodie E, Connolly J, et al. Impact of lime, nitrogen and plant species on bacterial community structure in grassland microcosms [J].Environmental Microbiology,2004,6(10):1070-1080 [64] Waldrop M P, ZAKA D R, Sinsabaugh R L. Microbial community response to nitrogen deposition in northern forest ecosystems [J].Soil Biology and Biochemistry,2004,36(9):1443-1451 [65] Flanagan P W, Van C K. Nutrient cycling in relation to decomposition and organic-matter quality in taiga ecosystems [J].Forest Research,1983,13(5):795-817 [66] Nohrstedt H Ö, Arnebrant K, Bååth E, et al. Change in carbon content, respiration rate, ATP content, and microbial biomass in nitrogen fertilized pine forest soils in Sweden [J].Forest Research,1989,19(3):323-328 [67] Hart S C, Nason G E, Myrold D D, et al. Dynamics of gross nitrogen transformations in an old growth forest: The carbon connection [J].Ecology,1994,75(4):880-891 [68] Schimel D S. Carbon and nitrogen turnover in adjacnet grassland and cropland ecosystem [J].Biogeochemistry,1986,2(4):345-357 [69] Johnson D, Leake J R, Lee J A, et al. Changes in soil microbial biomass and microbial activities in response to 7 years simulated pollutant nitrogen deposition on a heathland and two grasslands [J].Environmental Pollution,1998,103(2/3):239-250 [70] Oppermann B I, Michaelis W, Blumenberg M, et al. Soil microbial community changes as a result of long-term exposure to a natural CO2 vent[J]. Geochimica et Cosmochimica Acta,2010,74(9):2697-2716 [71] Carreiro M M, Sinsabaugh R L, Repert D A, et al. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition [J].Ecology,2000,81(9):2359-2365 [72] Chung H, Zak D R, Reich P B, et al. Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function[J].Global Change Biology,2007,13(5):980-989 [73] Hu S, Chapin F S, Firestone M, et al. Nitrogen limitation of microbial decomposition in a grassland under elevated CO2[J].Nature,2001,409(6817):188-191 [74] Gill R A, Polley H W, Johnson H B, et al. Nonlinear grassland responses to past and future atmospheric CO2[J].Nature,2002,417(6886):279-282 [75] Weltzin J F, Bridgham S D, Pastor J, et al. Potential effects of warming and drying on peatland plant community composition [J].Global Change Biology,2003,9(2):141-151 [76] Steenwerth K L, Jackson L E, Calderón F J, et al. Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California [J].Soil Biology and Biochemistry,2002,34(11):1599-1611 [77] Bååth E, Anderson T H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques [J].Soil Biology and Biochemistry,2003,35(7):955-963 [78] Yang Y, Fang J, Smith P, et al. Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004[J].Global Change Biology,2009,15(11):2723-2729 [79] Williams B L, Silcock D J. Nutrient and microbial changes in the peat profile beneath Sphagnum magellanicum in response to additions of ammonium nitrate [J]. Journal of Applied Ecology,1997,34(4):961-970 [80] DeForest J L, Zaka D R, Pregitzer K S K S, et al. Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillinin a northern hardwood forest [J].Soil Biology and Biochemistry,2004,36(6):965-971 [81] Waldrop M P, Zaka D R, Sinsabaugh R L, et al. Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity [J].Ecological Applications,2004,14(4):1172-1177 [82] Bowden R D, Davidon E, Savage K, et al. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest [J].Forest Ecology and Management,2004,196(1):43-56 [83] 芦光新,陈秀蓉,杨成德,等.真菌分泌纤维素酶与2种草坪草凋落物有机质降解相互关系的研究[J].草地学报,2011,19(6):954-959 [84] Gregory K E, Matthew P A. Plasticity and constraint in growth and protein mineralization of ectomycorrhizal fungi under simulated nitrogen deposition [J].Mycologia,2002,94(6):921-932 [85] Rüdiger H, Joachim W, Sabine M, et al. Biochemical and molecular aspects of C/N interaction in ectomycorrhizal plants: an update [J].Plant and Soil,1999,215(2):103-113 [86] Wallenda T, Schaeffer C, Einig W, et al. Effects of varied soil nitrogen supply on Norway spruce (Picea abies [L.] Karst.) II.Carbon metabolism in needles and mycorrhizal root[J].Plant and Soil,1996,186(2):361-369 [87] Martin F, Cote R, Canet D. NH+4♂ assimilation in the ectomycorrhizal basidiomycete Laccaria bicolor (Maire) Orton, a15N-NMR study [J].New Phytologist,1994,128(3):479-485 [88] Erik A L, Erik A H, Timothy J Fahey. Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes [J]. New Phytologist,2002,154(1):219-231 [89] 庞欣,张福锁,王敬国.不同供氮水平对根际微生物量氮及微生物活度的影响[J].植物营养与肥料学报,2000,6(4):476-480 [90] Rousk J, Frey S D, Bååth E. Temperature adaptation of bacterial communities in experimentally warmed forest soils[J].Global Change Biology,2012,18(10):3252-3258 [91] Zhou J Z, Xue K, Xie J P, et al. Microbial mediation of carbon-cycle feedbacks to climate warming[J].Nature Climate Change,2012,2(2):106-110 [92] Paterson I D, Downie D A, Hill M P. Using molecular methods to determine the origin of weed populations of Pereskia aculeata in South Africa and its relevance to biological control[J].Biological Control,2009,48(1):84-91 [93] Moreira D, Lopez-Garcia P. The molecular ecology of microbial eukaryotes unveils a hidden world [J].Trends in Microbiol-ogy,2002,10(1):31-38 |
[1] | 金艳霞, 陈哲, 周华坤, 付京晶. 草地生态系统中植被冠层截留的研究进展[J]. 草地学报, 2021, 29(S1): 1-9. |
[2] | 姚玉娇, 梁婷, 马源, 周会程, 肖海龙, 孙斌, 张德罡, 陈建纲. 土壤微生物群落多样性对高寒草甸退化程度的响应[J]. 草地学报, 2020, 28(6): 1489-1497. |
[3] | 姜路帆, 李亚衡, 杨进荣, 王勇. 降水变化对锡林郭勒草原土壤动物数量的影响[J]. 草地学报, 2019, 27(3): 766-774. |
[4] | 俞鸿千, 蒋齐, 王占军, 何建龙, 何晨. VOR、CVOR指数在宁夏干旱风沙区荒漠草原健康评价中的应用——以盐池县为例[J]. 草地学报, 2018, 26(3): 584-590. |
[5] | 张晓琳, 翟鹏辉, 黄建辉. 降水和氮沉降对草地生态系统碳循环影响研究进展[J]. 草地学报, 2018, 26(2): 284-288. |
[6] | 王穗子, 樊江文, 刘帅. 中国草地碳库估算差异性综合分析[J]. 草地学报, 2017, 25(5): 905-913. |
[7] | 董世魁, 吴娱, 刘世梁, 苏旭坤, 赵海迪, 张勇. 阿尔金山国家级自然保护区草地生态安全评价[J]. 草地学报, 2016, 24(4): 906-909. |
[8] | 刘文亭, 卫智军, 吕世杰, 孙世贤. 中国草原生态化学计量学研究进展[J]. 草地学报, 2015, 23(5): 914-926. |
[9] | 谭红妍, 陈宝瑞, 闫瑞瑞, 辛晓平, 陶金. 草地土壤微生物特性及其对人为干扰响应的研究进展[J]. 草地学报, 2014, 22(6): 1163-1170. |
[10] | 陈辰, 王靖, 潘学标, 潘志华, 魏玉蓉. 气候变化对内蒙古草地生产力影响的模拟研究[J]. 草地学报, 2013, 21(5): 850-860. |
[11] | 白梨花, 斯日格格, 曹丽霞, 乌恩. 丛枝菌根对牧草与草地生态系统的重要作用及其研究展望[J]. , 2013, 21(2): 214-221. |
[12] | 陈辰, 王靖, 潘学标, 魏玉蓉, 冯利平. CENTURY模型在内蒙古草地生态系统的适用性评价[J]. , 2012, 20(6): 1011-1019. |
[13] | 陈佐忠, 王艳芬, 汪诗平, 周兴民. 中国草地生态系统分类初步研究[J]. , 2002, 10(2): 81-86. |
阅读次数 | ||||||
全文 283
|
|
|||||
摘要 |
|
|||||