[1] Clark W C, Holling C S. Sustainable development of the biosphere:Human activities and global change [C]//Malone T F, Roederer, eds. Global change. Cambridge:Cambridge University Press,1985:474-490 [2] Price M F. Global change:Defining the Ill-defined [J].Environment,1989,31(8):18-20,42-44 [3] Jobbágy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation [J].Ecological Applications,2000,10(2):423-436 [4] 李博.我国草地资源现况及其管理对策[J].大自然探索,1997,16(1):12-14 [5] 徐柱.面向21世纪的中国草地资源[J].中国草地,1998,20(5):2-9 [6] 任继周,侯扶江.草业科学的多维结构[J].草业学报,2010,19(3):1-5 [7] Parry M, Canziani O, Palutikof J, et al. Climate change 2007: Impacts, adaptation and vulnerability[M]. Cambrige (United Kingdom), New York (USA).Intergovernmental Panel on Climate Change,2007 [8] Beniston M, Diaz H F, Bradley R S. Climatic change at high elevation sites: An overview [J]. Climatic Change,1997,36(3/4):233-251 [9] Thomas C D, Cameron A, Green R E, et al. Extinction risk from climate change [J].Nature,2004,427(6970):145-148 [10] Theurillat J P, Guisan A. Potential impact of climate change on vegetation in the European Alps:A review[J].Climatic Change,2001,50(1/2):77-109 [11] Korner C. Alpine plant life:Functional plant ecology of high mountain ecosystems [M]. 2nd ed. New York:Springer Berlin Heidel berg,2003 [12] 贺金生,王政权,方精云.全球变化下的地下生态学:问题与展望[J].科学通报,2004,49(13):1226-1233 [13] Brussaard L, De Ruiter P C, Brown G G. Soil biodiversity for agricultural sustainability[J].Agriculture, Ecosystems and Environment,2007,121(3):233-244 [14] Bissett A, Burke C, Cook P L M, et al. Bacterial community shifts in organically perturbed sediments[J]. Environmental Microbiology,2007,9(1):46-60 [15] Myers R T, Zak D R, White D C, et al.Landscape-level patterns of microbial community composition and substrate use in upland forest ecosystems[J].Soil Science Society of America Journal,2001,65(2):359-367 [16] Elizabeth K, Costello S, Schmidt K. Microbial diversity in alpine tundra wet meadow soil:Novel Chloroflexi from a cold,water-saturated environment [J].Environmental Microbiology,2006,8(8):1471-1486 [17] Ika D, Franz Z, Axel M, et al.Microbial community composition and activity in different Alpine vegetation zones[J]. Soil Biology and Biochemistry,2010,42(2):155-161 [18] Li N, Wang G, Gao Y, et al.Warming effects on plant growth, soil nutrients, microbial biomass and soil enzymes activities of two alpine meadows in Tibetan plateau[J].Journal of Ecology,2011,59(1):25-35 [19] Zheng Y, Yang W, Sun X, et al.Methanotrophic community structure and activity under warming and grazing of alpine meadow on the Tibetan Plateau [J].Applied and Environmental Microbiology,2012,93(5):2193-2203 [20] Ellen H E, Daniel LHernández, Jae R Pasari,et al.Response of soil microbial activity to grazing, nitrogen deposition, and exotic cover in a serpentine grassland [J].Plant Soil,2013,366(1/2):671-682 [21] Djukic I, Zehetner F, Watzinger A, et al. In situ carbon turnover dynamics and the role of soil microorganisms therein: 4 climate warming study in an Alpine ecosystem [J].FEMS Microbiology Ecology,2013,83(1):112-124 [22] 夏北成.植被对土壤微生物群落结构的影响[J].应用生态学报,1998,9(3):196-300 [23] Xiao H L, Zheng X J. Effects of plant diversity on soil microbes [J].Soil and Environmental Sciences,2001,10(3):238-241 [24] He Z, Piceno Y, Deng Y, et al. The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide[J].The International Society for Microbial Ecology,2012,6(2):259-272 [25] Niklaus P, Alphei J, Ebersberger D, et al. Six years of in situ CO2 enrichment evoke changes in soil structure and soil biota of nutrient-poor grassland [J].Global Change Biology,2003,9(4):585-600 [26] Ebersberger D, Wermbter N, Niklaus P A, et al.Effects of long term CO2 enrichment on microbial community structure in calcareous grassland [J].Plant and Soil,2004,264(1):313-323 [27] Kelley A M, Fay P A, Polley H W, et al.Atmospheric CO2 and soil extracellular enzyme activity:A meta-analysis and CO2 gradient experiment [J].Ecosphere,2011,2(8):1-20 [28] Jackson R B,Cook C W,Pippen J S,et al.Increased belowground biomass and soil CO2 fluxes after a decade of carbon dioxide enrichment in a warm-temperate forest[J].Ecology,2009,90(12):3352-3366 [29] Niu S,Wu M,Han Y,et al.Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe[J].New Phytologist,2008,177(1):209-219 [30] Pankratov T A, Ivanova A O, Dedysh S N, et al.Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat [J].Environmental Microbiology,2011,13(7):1800-1814 [31] Malchair S, De Boeck H J, Lemmens C M H M, et al. Diversity-function relationship of ammonia-oxidizing bacteria in soils among functional groups of grassland species under climate warming [J].Applied Soil Ecology,2010,44(1):15-23 [32] Horz H P, Rich V, Avrahami S, et al. Methane-oxidizing bacteria in a California upland grassland soil:Diversity and response to simulated global change[J].Applied and Environmental Microbiology,2005,71(5):2642-2652 [33] 米亮,王光华,金剑,等.黑土微生物呼吸及群落功能多样性对温度的响应[J].应用生态学报,2010,21(6):1485-1491 [34] Kandeler E, Tscherko D, Bardgett R D, et al.The response of soil microorganisms and roots to elevated CO2 and temperature in a terrestrial model ecosystem [J].Plant and Soil,1998,202(2):251-262 [35] Bardgett R D, Kandeler E, Tscherko D, et al.Below-ground microbial community development in a high temperature world [J].Oikos,1999,85(2):193-203 [36] 芦光新,刘雯,卞静,等.一株来自东祁连山高寒草地土壤纤维素分解真菌培养特性的研究[J].草原与草坪,2011,30(3):50-55 [37] Scharpenseel H W, Schomaker M, Ayoub A. Soils on a warmer earth:Effects of expected climate change on soil processes,with emphasis on the tropics and subtropics[M].New York, USA: Elsevier Science Ltd,1990 [38] Galloway J N, Cowling E B. Reactive nitrogen and the world:200 years of change [J].Ambiology,2002,31(2):64-71 [39] Matson P A, Lohse K A, Hall S J. The globalization of nitrogen deposition: Consequences for terrestrial ecosystems [J].Ambiology,2002,31(2):113-119 [40] Zhang N L, Wan S Q, Li L H, et al.Impacts of urea N addition on soil microbial community in a semi-arid temperate steppe in northern China [J].Plant Soil,2008,311(1/2):19-28 [41] Bardgett R D, Lovell R D, Hobbs P J, et al.Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands [J].Soil Biology and Biochemistry,1999,31(7):1021-1030 [42] Frey S D, Knorr M, Parrent J L, et al.Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests [J]. Forest Ecology and Management,2004,196(1):159-171 [43] 薛璟花,莫江明,李炯,等.氮沉降增加对土壤微生物的影响[J].生态环境,2005,14(5):777-782 [44] 刘蔚秋,刘滨扬,王江,等.不同环境条件下土壤微生物对模拟大气氮沉降的响应[J].生态学报,2010,30(7):1691-1698 [45] Yevdokimov I, Gattinger A, Buegger F, et al. Changes in microbial community structure in soil as a result of different amounts of nitrogen fertilization[J].Biology and Fertility of Soils,2008,44(8):1103-1106 [46] Hobbie S E, Vitousek P M. Nutrient limitation of decomposition in Hawaiian forests [J].Ecology,2000,81(7):1867-1877 [47] Berg B. Litter decomposition and organic matter turnover in northern forest soils [J].Forest Ecology and Management,2000,133(1/2):13-22 [48] Fog K. The effect of added nitrogen on the rate of decomposition of organic matter [J].Biological Reviews of the Cambridge Philosophical Society,1988,63(3):433-462 [49] Deforest J L, Zaka D R, Pregitzer K S, et al. Atmospheric nitrate deposition, microbial community composition, and enzyme activity in Northern Hardwood forests [J].Soil Science Society America,2004,68(1):132-138 [50] Di H J, Cameron K C, Shen J P, et al. Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions [J].FEMS Microbiology Ecology,2010,72(3):386-394 [51] 张燕,崔学民,樊明寿.大气氮沉降及其对草地生物多样性的影响[J].草业科学,2007,24(7):12-17 [52] Lovell R D, Jarvis S C, Bardgett R D. Soil microbial biomass and activity in long-term grassland: Effects of management changes[J]. Soil Biology and Biochemistry,1995,27(7):969-975 [53] Wallenstein M D, Mcnulty S, Fernandez I J, et al.Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments [J].Forest Ecology and Management,2006,222(1/3):459-468 [54] Fisk M C, Fahey T J. Microbial biomass and nitrogen cycling responses to fertilization and litter removal in young northern hardwood forests [J].Biogeochemistry,2001,53(2):201-223 [55] Compton J E, Watruda L S, Porteousa L A, et al. Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest [J].Forest Ecology and Management,2004,196(1):143-158 [56] Boxman A W, Blanck K, Brandrud T E, et al. Vegetation and soil biota response to experimentally changed nitrogen inputs in coniferous forest ecosystems of the NITREX project[J]. Forest Ecology and Management,1998,101(1/3):65-79 [57] Imberger K T, Chiu C Y. Spatial changes of soil fungal and bacterial biomass from a sub-alpine coniferous forest to grassland in a humid, sub-tropical region [J].Biology and Fertility of Soils,2001,33(2):105-110 [58] 刘洋,张健,闫帮国,等.青藏高原东缘高山森林-苔原交错带土壤微生物生物量碳、氮和可培养微生物数量的季节动态[J].植物生态学报,2012,36(5):382-392 [59] West A W. Improvement of the selective respiratory inhibition technique to measure eukaryote: Prokaryote ratios in soils [J].Journal of Microbiological Methods,1986,5(3/4):125-138 [60] Carney K M, Hungate B A, Drake B G, et al. Altered soil microbial community at elevated CO2 leads to loss of soil carbon [J].Proceedings of the National Academy of Sciences of USA,2007,104(12):4990-4995 [61] Kandeler E, Mosier A R, Morgan J A, et al. Transient elevation of carbon dioxide modifies the microbial community composition in a semi-arid grassland [J].Soil Biology and Biochemistry,2008,40(1):162-171 [62] Zhang W, Parker K M, Luo Y, et al. Soil microbial responses to experimental warming and clipping in a tallgrass prairie [J].Global Change Biology,2005,11(2):266-277 [63] Kennedy N, Brodie E, Connolly J, et al. Impact of lime, nitrogen and plant species on bacterial community structure in grassland microcosms [J].Environmental Microbiology,2004,6(10):1070-1080 [64] Waldrop M P, ZAKA D R, Sinsabaugh R L. Microbial community response to nitrogen deposition in northern forest ecosystems [J].Soil Biology and Biochemistry,2004,36(9):1443-1451 [65] Flanagan P W, Van C K. Nutrient cycling in relation to decomposition and organic-matter quality in taiga ecosystems [J].Forest Research,1983,13(5):795-817 [66] Nohrstedt H Ö, Arnebrant K, Bååth E, et al. Change in carbon content, respiration rate, ATP content, and microbial biomass in nitrogen fertilized pine forest soils in Sweden [J].Forest Research,1989,19(3):323-328 [67] Hart S C, Nason G E, Myrold D D, et al. Dynamics of gross nitrogen transformations in an old growth forest: The carbon connection [J].Ecology,1994,75(4):880-891 [68] Schimel D S. Carbon and nitrogen turnover in adjacnet grassland and cropland ecosystem [J].Biogeochemistry,1986,2(4):345-357 [69] Johnson D, Leake J R, Lee J A, et al. Changes in soil microbial biomass and microbial activities in response to 7 years simulated pollutant nitrogen deposition on a heathland and two grasslands [J].Environmental Pollution,1998,103(2/3):239-250 [70] Oppermann B I, Michaelis W, Blumenberg M, et al. Soil microbial community changes as a result of long-term exposure to a natural CO2 vent[J]. Geochimica et Cosmochimica Acta,2010,74(9):2697-2716 [71] Carreiro M M, Sinsabaugh R L, Repert D A, et al. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition [J].Ecology,2000,81(9):2359-2365 [72] Chung H, Zak D R, Reich P B, et al. Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function[J].Global Change Biology,2007,13(5):980-989 [73] Hu S, Chapin F S, Firestone M, et al. Nitrogen limitation of microbial decomposition in a grassland under elevated CO2[J].Nature,2001,409(6817):188-191 [74] Gill R A, Polley H W, Johnson H B, et al. Nonlinear grassland responses to past and future atmospheric CO2[J].Nature,2002,417(6886):279-282 [75] Weltzin J F, Bridgham S D, Pastor J, et al. Potential effects of warming and drying on peatland plant community composition [J].Global Change Biology,2003,9(2):141-151 [76] Steenwerth K L, Jackson L E, Calderón F J, et al. Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California [J].Soil Biology and Biochemistry,2002,34(11):1599-1611 [77] Bååth E, Anderson T H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques [J].Soil Biology and Biochemistry,2003,35(7):955-963 [78] Yang Y, Fang J, Smith P, et al. Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004[J].Global Change Biology,2009,15(11):2723-2729 [79] Williams B L, Silcock D J. Nutrient and microbial changes in the peat profile beneath Sphagnum magellanicum in response to additions of ammonium nitrate [J]. Journal of Applied Ecology,1997,34(4):961-970 [80] DeForest J L, Zaka D R, Pregitzer K S K S, et al. Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillinin a northern hardwood forest [J].Soil Biology and Biochemistry,2004,36(6):965-971 [81] Waldrop M P, Zaka D R, Sinsabaugh R L, et al. Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity [J].Ecological Applications,2004,14(4):1172-1177 [82] Bowden R D, Davidon E, Savage K, et al. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest [J].Forest Ecology and Management,2004,196(1):43-56 [83] 芦光新,陈秀蓉,杨成德,等.真菌分泌纤维素酶与2种草坪草凋落物有机质降解相互关系的研究[J].草地学报,2011,19(6):954-959 [84] Gregory K E, Matthew P A. Plasticity and constraint in growth and protein mineralization of ectomycorrhizal fungi under simulated nitrogen deposition [J].Mycologia,2002,94(6):921-932 [85] Rüdiger H, Joachim W, Sabine M, et al. Biochemical and molecular aspects of C/N interaction in ectomycorrhizal plants: an update [J].Plant and Soil,1999,215(2):103-113 [86] Wallenda T, Schaeffer C, Einig W, et al. Effects of varied soil nitrogen supply on Norway spruce (Picea abies [L.] Karst.) II.Carbon metabolism in needles and mycorrhizal root[J].Plant and Soil,1996,186(2):361-369 [87] Martin F, Cote R, Canet D. NH+4♂ assimilation in the ectomycorrhizal basidiomycete Laccaria bicolor (Maire) Orton, a15N-NMR study [J].New Phytologist,1994,128(3):479-485 [88] Erik A L, Erik A H, Timothy J Fahey. Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes [J]. New Phytologist,2002,154(1):219-231 [89] 庞欣,张福锁,王敬国.不同供氮水平对根际微生物量氮及微生物活度的影响[J].植物营养与肥料学报,2000,6(4):476-480 [90] Rousk J, Frey S D, Bååth E. Temperature adaptation of bacterial communities in experimentally warmed forest soils[J].Global Change Biology,2012,18(10):3252-3258 [91] Zhou J Z, Xue K, Xie J P, et al. Microbial mediation of carbon-cycle feedbacks to climate warming[J].Nature Climate Change,2012,2(2):106-110 [92] Paterson I D, Downie D A, Hill M P. Using molecular methods to determine the origin of weed populations of Pereskia aculeata in South Africa and its relevance to biological control[J].Biological Control,2009,48(1):84-91 [93] Moreira D, Lopez-Garcia P. The molecular ecology of microbial eukaryotes unveils a hidden world [J].Trends in Microbiol-ogy,2002,10(1):31-38 |