[1] MOE S J,STELZER R S,FORMAN M R,et al. Recent advances in ecological stoichiometry:insights for population and community ecology[J]. Oikos,2005,109(1):29-39 [2] SARDANS J,RIVAS-UBACH A,PEÑUELAS J. The C∶N∶P stoichiometry of organisms and ecosystems in a changing world:A review and perspectives[J]. Perspectives in Plant Ecology,Evolution and Systematics,2012,14(1):33-47 [3] RONG Q,LIU J,CAI Y,et al. Leaf carbon,nitrogen and phosphorus stoichiometry of Tamarix chinensis Lour. in the Laizhou Bay coastal wetland,China[J]. Ecological Engineering,2015,76:57-65 [4] LIU R,ZHAO H,ZHAO X,et al. Facilitative effects of shrubs in shifting sand on soil macro-faunal community in Horqin Sand Land of Inner Mongolia,Northern China[J]. European Journal of Soil Biology.2011,47(5):316-321 [5] MAO R,CHEN H,ZHANG X,et al. Effects of P addition on plant C∶N∶P stoichiometry in an N-limited temperate wetland of Northeast China[J]. Science of The Total Environment,2016,559:1-6 [6] GVSEWELL S. N∶P ratios in terrestrial plants:variation and functional significance[J]. New Phytologist,2004,164(2):243-266 [7] WRIGHT I J,REICH P B,Cornelissen J H C,et al. Assessing the generality of global leaf trait relationships[J]. New Phytologist,2005,166(2):485-496 [8] XIA C,YU D,WANG Z,et al. Stoichiometry patterns of leaf carbon,nitrogen and phosphorous in aquatic macrophytes in eastern China[J]. Ecological Engineering,2014,70:406-413 [9] HE J,WANG L,FLYNN D F B,et al. Leaf nitrogen∶phosphorus stoichiometry across Chinese grassland biomes[J]. Oecologia,2008,155(2):301-310 [10] YAN W,ZHONG Y,ZHENG S,et al. Linking plant leaf nutrients/stoichiometry to water use efficiency on the Loess Plateau in China[J]. Ecological Engineering,2016,87:124-131 [11] ÅGREN G I,WEIH M. Plant stoichiometry at different scales:element concentration patterns reflect environment more than genotype[J]. New Phytologist,2012,194(4):944-952 [12] YU H,FAN J,HARRIS W,et al. Relationships between below-ground biomass and foliar N∶P stoichiometry along climatic and altitudinal gradients of the Chinese grassland transect[J]. Plant Ecology,2017,218(6):661-671 [13] AI Z,HE L,XIN Q,et al. Slope aspect affects the non-structural carbohydrates and C∶N∶P stoichiometry of Artemisia sacrorum on the Loess Plateau in China[J]. Catena,2017,152:9-17 [14] YIN H,ZHENG H,ZHANG B,et al. Stoichiometry of C∶N∶P in the roots of Alhagi sparsifolia is more sensitive to soil nutrients than aboveground organs[J]. Frontiers in Plant Science,2021,12:698961 [15] 刘敏国,王士嘉,陆姣云,等. 河西走廊藜麦C、N、P生态化学计量学特征对物候期的响应[J]. 干旱区研究,2018,35(1):192-198 [16] ZHENG S,REN H,LI W,et al. Scale-dependent effects of grazing on plant C∶N∶P stoichiometry and linkages to ecosystem functioning in the Inner Mongolia grassland[J]. Plos One,2012,7(12):e51750 [17] WU T,QU C,LI Y,et al. Warming effects on leaf nutrients and plant growth in tropical forests[J]. Plant Ecology,2019,220(7):663-674 [18] HE M,DIJKSTRA F A. Drought effect on plant nitrogen and phosphorus:a meta-analysis[J]. New Phytologist,2014,204(4):924-931 [19] DU C,WANG X,ZHANG M,et al. Effects of elevated CO2 on plant C-N-P stoichiometry in terrestrial ecosystems:A meta-analysis[J]. Science of The Total Environment,2019,650:697-708 [20] GVSEWELL S. Nutrient resorption of wetland graminoids is related to the type of nutrient limitation[J]. Functional Ecology,2005,19(2):344-354 [21] GOTELLI N J,MOUSER P J,HUDMAN S P,et al. Geographic variation in nutrient availability,stoichiometry,and metal concentrations of plants and pore-water in ombrotrophic bogs in New England,USA[J]. Wetlands,2008,28(3):827-840 [22] JAENIKE J,MARKOW T A. Comparative elemental stoichiometry of ecologically diverse Drosophila[J]. Functional Ecology,2003,17(1):115-120 [23] 王静,魏小红,龙瑞军. 东祁连山高寒草甸植物抗寒性研究[J]. 草地学报,2007,15(6):537-542 [24] 赵林. 青藏高原多年冻土及变化[M]. 北京:科学出版社,2019:7-12 [25] 方玉琢. 青藏高原主要草地群落叶氮磷化学计量特征的环境响应[D]. 兰州:兰州大学,2019:26 [26] 姚檀栋,刘晓东,王宁练. 青藏高原地区的气候变化幅度问题[J]. 科学通报,2000(1):98-106 [27] ZHANG Y,WANG G,WANG Y. Response of biomass spatial pattern of alpine vegetation to climate change in permafrost region of the Qinghai-Tibet Plateau,China[J]. Journal of Mountain Science,2010,7(4):301-314 [28] 阳勇,陈仁升,吉喜斌. 近几十年来黑河野牛沟流域的冰川变化[J]. 冰川冻土,2007(1):100-106 [29] 刘婵,刘冰,赵文智,等. 黑河流域植被水分利用效率时空分异及其对降水和气温的响应[J]. 生态学报,2020,40(3):888-899 [30] 梁冰妍,徐海燕,吴晓东,等. 祁连山不同草地类型区土壤有机碳组份的差异[J]. 地球科学,2024,49(4):1487-1497 [31] 李莉莎,徐海燕,吴晓东,等. 青藏高原高山嵩草叶、根抗寒性生理特征[J]. 草地学报,2020,28(6):1544-1551 [32] 韩发,岳向国,师生波,等. 青藏高原几种高寒植物的抗寒生理特性[J].西北植物学报,2005,25(12):2502-2509 [33] 杜坤,李金萍,王婷,等. 转抗草甘膦基因甘蓝型油菜根际土壤理化性质及真菌群落多样性[J]. 生态学杂志,2024,43(4):1082-1091 [34] 杨琼,谭凤仪,吴苑玲,等. 不同林龄海桑林和无瓣海桑林根际微生物特征[J]. 生态学杂志,2014,33(2):296-302 [35] 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社,2000:25-97 [36] NELSON D W,SOMMERS L E. Total Carbon,Organic Carbon,and Organic Matter[M]. Methods of Soil Analysis,1996:961-1010 [37] OLSEN S R. Estimation of available phosphorus in soils by extraction with sodium bicarbonate[M]. Washington:USDA Circular,1954:18-19 [38] REN S,YU G,TAO B,et al. Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC[J]. New Phytologist,2007,28(12):2665-2673 [39] HAN W,FANG J,GUO D,et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist,2005,168(2):377-385 [40] TANG Z,XU W,ZHOU G,et al. Patterns of plant carbon,nitrogen,and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems[J]. Proceedings of the National Academy of Sciences,2018,115(16):4033-4038 [41] REICH P B,OLEKSYN J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences,2004,101(30):11001-11006 [42] WOODS H A,MAKINO W,COTNER J B,et al. Temperature and the chemical composition of poikilothermic organisms[J]. Functional Ecology,2003,17(2):237-245 [43] KOERSELMAN W,ARTHUR F M M. The vegetation N∶P ratio:a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology,1996,33(6):1441-1450 [44] MVLLER M,OELMANN Y,SCHICKHOFF U,et al. Himalayan treeline soil and foliar C∶N∶P stoichiometry indicate nutrient shortage with elevation[J]. Geoderma,2017,291:21-32 [45] XU X,QIN Y,CAO J J,et al. Elevational variations of leaf stochiometry in Leontopodium leontopodioides on the Qinghai-Tibetan Plateau,China[J]. Chinese Journal of Applied Ecology,2018,29(12):3934-3940 [46] STERNER R W,ELSER J J. Ecological stoichiometry:the biology of elements from molecules to the biosphere[M]. New Jersey:Princeton University Press,2002:262 [47] WANG X,LV X,DIJKSTRA F A,et al. Changes of plant N∶P stoichiometry across a 3000 km aridity transect in grasslands of northern China[J]. Plant and Soil,2019,443(1):107-119 [48] 牛得草,董晓玉,傅华. 长芒草不同季节碳氮磷生态化学计量特征[J]. 草业科学,2011,28(6):915-920 [49] STRIEBEL M,SPÖRL G,STIBOR H. Light-induced changes of plankton growth and stoichiometry:Experiments with natural phytoplankton communities[J]. Limnology and Oceanography,2008,53(2):513-522 [50] 孙书存,陈灵芝. 东灵山地区辽东栎叶养分的季节动态与回收效率[J]. 植物生态学报,2001,25(1):76-82 [51] SARDANS J,PEÑUELAS J. The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system[J]. Plant Physiology,2012,160(4):1741-1761 [52] CAO Y B,WANG B T,WEI T T,et al. Ecological stoichiometric characteristics and element reserves of three stands in a closed forest on the Chinese loess plateau [J]. Environmental Monitoring and Assessment,2016,188(2):80 [53] 刘万德,苏建荣,李帅锋,等. 云南普洱季风常绿阔叶林优势物种不同生长阶段叶片碳、氮、磷化学计量特征[J]. 植物生态学报,2015,39(1):52-62 [54] 罗海斌,黄诚梅,朱慧明,等. 干旱胁迫对甘蔗根系碳氮代谢的影响[J]. 南方农业学报,2020,51(6):1332-1338 [55] HERBERT D A,WILLIAMS M,RASTETTER E B. A model analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment[J]. Biogeochemistry,2003,65(1):121-150 [56] QIN Y Y,LIU W,ZHANG X F,et al. Leaf stoichiometry of Potentilla Fruticosa across elevations ranging from 2400 m to 3800 m in China’s Qilian Mountains (Northeast Qinghai-Tibetan Plateau)[J]. Frontiers in Plant Science,2022,13:814059 |