[1] Saunders J W, Bingham E T. Production of alfalfa plants from callus tissue [J]. Crop Science,1972,12(6):804-808 [2] 申玉华,徐振军,唐立红,等.苜蓿耐逆转基因的研究进展[J].黑龙江畜牧兽医:科技版,2010(21):26-28 [3] 黎茵,黄霞,黄学林.根癌农杆菌介导的苜蓿体胚转化[J].植物生理与分子生物学学报,2003,29(2):109-113 [4] 刘文婷,段琦梅,刘景玲,等.农杆菌介导的苜蓿次级体细胞胚的遗传转化[J].生物工程学报,2012,28(2):203-213 [5] 张万军,王涛.紫花苜蓿愈伤成苗高频再生体系的建立及其影响因子的研究[J].中国农业科学,2002,35(12):1579-1583 [6] 梁慧敏,黄剑,夏阳,等.苜蓿外植体再生系统的建立研究[J].中国草地,2003,25(4):8-14 [7] Hua Y, Zhang B X, Cai H, et al. Stress-inducible expression of GsSAMS2 enhances salt tolerance in transgenic Medicago sativa [J]. African Journal of Biotechnology,2012,11(17):4030-4038 [8] 刘艳芝,王玉民,邢少辰,等.苜蓿组织培养体细胞发生体系的建立[J].草业科学,2005,23(1):34-36 [9] 包爱科,王强龙,张金林,等.苜蓿基因工程研究进展[J].分子植物育种,2007,5(6):160-168 [10] 黄绍兴,吕德扬,邵嘉红,等.紫花苜蓿原生质体转基因植株再生[J].科学通报,1991,36(17):1345-1347 [11] Pereira L F, Erickson L. Stable transformation of alfalfa (Medicago sativa L.) by particle bombardment [J]. Plant Cell Reports,1995,14(5):290-293 [12] 王瑛,朱宝成,孙毅,等.外源lea3基因转化紫花苜蓿的研究[J].核农学报,2007,21(3):249-252 [13] Deak M, Kiss G B, Korkz C, et al. Transformation of Medicago by Agrobacterium mediated gene transfer [J]. Plant Cell Reports,1986,5(2):97-100 [14] Webb K J. Transformation of forage legumes using Agrobacterium tumefaciens [J]. Theoretical and Applied Genetics,1986,72(1):53-58 [15] Winicov I, Bastola D R. Transgenic overexpression of the transcription factor Alfin1 enhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants [J]. Plant Physiology,1999,120(2):473-480 [16] 梁慧敏,夏阳,孙仲序,等.根癌农杆菌介导苜蓿遗传转化体系的建立[J].农业生物技术学报,2005,13(2):152-156 [17] 王强龙,王锁民,张金林,等.根癌农杆菌介导AtNHX1基因转化紫花苜蓿的研究[J].草业科学,2006,23(12):55-59 [18] 盛慧,朱延明,李杰,等.DREB2A基因对苜蓿遗传转化的研究[J].草业科学,2007,24(3):40-45 [19] 赵红娟,张博,李培英,等.农杆菌介导犁苞滨藜NHX基因转化苜蓿的影响因素[J].草地学报,2007,15(5):418-422 [20] Zhang Y M, Liu Z H, Wen Z Y, et al. The vacuolar Na+- H+ antiport gene TaNHX2 confers salt tolerance on transgenic alfalfa (Medicago sativa) [J]. Functional Plant Biology,2012,39(8):708-716 [21] Li W F, Wang D L, Jin T C, et al. The vacuolar Na+/H+ antiporter gene SsNHX1 from the halophyte Salsola soda confers salt tolerance in transgenic alfalfa (Medicago sativa L.) [J]. Plant Molecular Biology Reporter,2011,29(2):278-290 [22] 燕丽萍,夏阳,毛秀红,等.转BADH基因紫花苜蓿山苜2号品种的抗盐性鉴定及系统选育[J].植物学报,2011,46(3):293-301 [23] Liu Z H, Zhang H M, Li G L, et al. Enhancement of salt tolerance in alfalfa transformed with the gene encoding for betaine aldehyde dehydrogenase [J]. Euphytica,2011,178(3):363-372 [24] Jin H C, Sun Y, Yang Q C, et al. Screening of genes induced by salt stress from alfalfa [J]. Molecular Biology Reports,2010,37(2):745-753 [25] Jin T C, Chang Q, Li W F, et al. Stress-inducible expression of GmDREB1conferred salt tolerance in transgenic alfalfa [J]. Plant Cell, Tissue and Organ Culture,2010,100(2):219-227 [26] 文益东,才华,柏锡,等.转AtDREB2A基因苜蓿的耐碱性分析[J].作物杂志,2012(3):32-35 [27] 王臻昱,才华,柏锡,等.野生大豆GsGST19基因的克隆及其转基因苜蓿的耐盐碱性分析[J].作物学报,2012,38(6):971-979 [28] Bai X, Liu J, Tang L L, et al. Overexpression of GsCBRLK from Glycine soja enhances tolerance to salt stress in transgenic alfalfa (Medicago sativa) [J]. Functional Plant Biology,2013,40(10):1048-1056 [29] Chen T T, Yang Q C, Zhang X Q, et al. An alfalfa (Medicago sativa L.) ethylene response factor gene, MsERF11, enhances salt tolerance in transgenic Arabidopsis [J]. Plant Cell Reports,2012,31(9):1737-1746 [30] McKersie B D, Chen Y R, de Beus M, et al. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.) [J]. Plant Physiology,1993,103(4):1155-1163 [31] McKersie B D, Murnaghan J, Jones K S, et al. Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance [J]. Plant Physiology,2000,122(4):1427-1437 [32] Brouwer D J, Duke S H, Osborn T C. Mapping genetic factors associated with winter hardiness, fall growth and freezing injury in autotetraploid alfalfa [J]. Crop Science,2000,40(5):1387-1396 [33] Samis K, Bowley S, McKersie B. Pyramiding Mn-superoxide dismutase transgenes to improve persistence and biomass production in alfalfa [J]. Journal of Experimental Botany,2002,53(372):1343-1350 [34] 徐春波,王勇,赵海霞,等.冷诱导转录因子AtCBF1转化紫花苜蓿的研究[J].草业学报,2012,21(4):168-174 [35] Laberge S, Castonguay Y, Vézina L P. New cold- and drought-regulated gene from Medicago sativa [J]. Plant Physiology,1993,101(4):1411-1412 [36] Wolfraim L A, Langis R, Tyson H, et al. cDNA sequence, expression, and transcript stability of a cold acclimation-specific gene, cas18, of alfalfa (Medicago falcata) cells [J]. Plant Physiology,1993,101(4):1275-1282 [37] Wolfraim L A, Dhindsa R S. Cloning and sequencing of the cDNA for casl7, a cold acclimation-specific gene of alfalfa [J]. Plant Physiology,1993,103(2):667-668 [38] 马春平, 崔国文.紫花苜蓿不同品种低温胁迫下抗寒基因cas18的表达分析[J].中国草地学报, 2007,29(6):83-93 [39] Cunningham S M, Nadeau P, Castonguay Y, et al. Raffinose and stachyose accumulation, galactinol synthase expression, and winter injury of contrasting alfalfa germplasms [J]. Crop Science,2003,43(2):562-570 [40] Dubé M P, Castonguay Y, Cloutier J, et al. Characterization of two novel cold-inducible K3 dehydrin genes from alfalfa (Medicago sativa spp. sativa L.) [J]. Theoretical and Applied Genetics,2013,126(3):823-835 [41] Mckersis B D, Bowley S R, Erni H, et al. Water-deficit tolerance and field performance of transgenic alflfa overexpressing superoxide dismutase [J]. Plant Physiology,1996,111(4):1177-1181 [42] Rubio M C, González E M, Minchin F R, et al. Effects of water stress on antioxidant enzyme of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases [J]. Physiologia Plantarum,2002,115(4):531-540 [43] Zhang J Y, Broeckling C D, Blancaflor E B, et al. Overexpression of WXP1, a putative Medicago truncatula AP2 domain - containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa L.) [J]. The Plant Journal,2005,42(5):689-707 [44] Jiang Q, Zhang J Y, Guo X. Physiological characterization of transgenic alfalfa (Medicago sativa) plants for improved drought tolerance [J]. International Journal of Plant Science,2009,107(8):969-978 [45] 刘媛, 夏阳, 杨克强, 等.渗透胁迫下转BADH基因苜蓿组培苗的抗性响应[J].中国农学通报, 2009,25(4):133-136 [46] Tang L L, Cai H, Ji W, et al. Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.) [J]. Plant Physiology and Biochemistry,2013,71:22-30 [47] Suárez R, Calderón C, Iturriaga G. Enhanced tolerance to multiple abiotic stresses in transgenic alfalfa accumulating trehalose [J]. Crop Science,2009,49(5):1791-1799 [48] Bao A K, Wang S M, Wu G Q, et al. Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.) [J]. Plant Science,2009,176(2):232-238 [49] Tesfaye M, Temple S J, Allan D L, et al. Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum [J]. Plant Physiology,2001,127(4):1836-1844 [50] 罗小英,崔衍波,邓伟,等.超量表达苹果酸脱氢酶基因提高苜蓿对铝毒的耐受性[J].分子植物育种, 2004,2(5):621-626 [51] Rosellini D, Barone P, Bouton J, et al. Aluminum tolerance in alfalfa with the citrate synthase gene [C]. The 38th Report of the North American Alfalfa Improvement Conference, Sacramento, CA,2002:27-31 [52] 甘智才, 陈东颖, 张丽, 等.转柠檬酸合成酶基因苜蓿耐铝性研究[J].中国农业科学, 2010,43(16):3461-3466 [53] Chen Q, Wu K H, Wang P, et al. Overexpression of MsALMT1, from the aluminum-sensitive Medicago sativa, enhances malate exudation and Aluminum resistance in tobacco [J]. Plant Molecular Biology Reporter,2013,31(3):769-774 [54] 王鸣刚, 骆换涛, 李志忠, 等.AtPCS1基因表达载体构建与转化苜蓿的研究[J].草业科学, 2011,28(2):201-206 [55] Wang X J, Song Y, Ma Y H, et al. Screening of Cd tolerant genotypes and isolation of metallothionein genes in alfalfa (Medicago sativa L.) [J]. Environmental Pollution,2011,159(12):3627-3633 |