[1] Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle:Recent trends, questions, and potential solutions[J]. Science,2008,320(5878):889-892
[2] Reay D S, Dentener F, Smith P, et al. Global nitrogen deposition and carbon sinks[J]. Nature Geoscience,2008,1(7):430-437
[3] Galloway J N, Cowling E B. Reactive nitrogen and the world:200 years of change[J]. Ambio, 2002,31(2):64-71
[4] Galloway J N, Dentener F J, Capone D G, et al. Nitrogen cycles:past, present, and future[J]. Biogeochemistry,2004,70(2):153-226
[5] Vitousek P M, Howarth R W. Nitrogen limitation on land and in the sea:how can it occur[J]. Biogeochemistry,1991,13:87-115
[6] Vitousek P M, Aber J D, Howarth R W, et al. Human alteration of the global nitrogen cycle:sources and consequences[J]. Ecological Applications,1997,7(3):737-750
[7] Klumpp K, Soussana J F. Using functional traits to predict grassland ecosystem change:a mathematical test of the response-and-effect trait approach[J]. Global Change Biology,2009,15(12):2921-2934
[8] 李德军,莫江明,方运霆,等. 模拟氮沉降对南亚热带两种乔木幼苗生物量及其分配的影响[J]. 植物生态学报,2005,29(4):543-549
[9] 方华,莫江明. 氮沉降对森林凋落物分解的影响[J]. 生态学报,2006,26(9):3127-3136
[10] 范志强,王政权,吴楚,等. 不同供氮水平对水曲柳苗木生物及其季节变化的影响[J]. 应用生态学报,2004,15(9):1497-1501
[11] 杨兰芳,蔡祖聪. 玉米生长和施氮水平对土壤有机碳更新的影响[J]. 环境科学学报,2006,26(2):280-286
[12] Zhang N L,Wan S Q,Li L H, et al. Impacts of urea N addition on soil microbial community in a semi-arid temperate steppe in northern China[J]. Plant and Soil,2008,311(1-2):19-28
[13] 王建林,欧阳华,王忠红,等. 青藏高原高寒草原土壤活性有机碳的分布特征[J]. 地理学报,2009,64(7):771-781
[14] Fornara D, Banin L, Crawley M J. Multi-nutrient vs. nitrogen-only effects on carbon sequestration in grassland soils[J]. Global Change Biology,2013,19(12):3848-3857
[15] 曹丛丛,齐玉春,董云社,等. 氮沉降对陆地生态系统关键有机碳组分的影响[J]. 草业学报,2014,23(2):323-332
[16] Zheng J J, Fang H J, Cheng S L, et al. Effects of N addition on soil organic carbon components in an alpine meadow on the eastern Qinghai-Tibetan Plateau[J]. Acta Ecologica Sinica,2012,32(17):5363-5372
[17] Wander M M, Traina S J, Stinner B R, et al. The effects of organic and conventional management on biologically active soil organic matter fraction[J]. Soil Science,1994,58(4):1130-1139
[18] 沈宏,曹志洪,胡正义,等. 土壤活性有机碳的表征及其生态意义[J]. 生态学杂志,1999,18(3):32-38
[19] Yang Y S, Guo J F, Chen G S, et al. Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China[J]. Plant and Soil,2009,323(1-2):153-162
[20] 孙彩丽,刘国彬,马海龙,等. 不同沙生植被土壤易氧化有机碳组分及其含量的差异[J]. 草地学报,2012,20(5):863-869
[21] Janzen H. Soil organic matter characteristics after long-term cropping to various spring wheat rotations[J]. Canadian Journal of Soil Science,1987,67:845-856
[22] Maia S M F, Xavier F A S, Oliveira T S, et al. Organic carbon pools in a Luvisol under agroforestry and conventional farming systems in the semi-arid region of Ceará, Brazil[J]. Agroforestry systems,2007,71(2):127-138
[23] Chan K Y, Bowman A, Oates A, et al. Oxidizible organic carbon fractions and soil quality changes in an oxic paleustalf under different pasture leys[J]. Soil Science,2001,166(1):61-67
[24] Sherrod L, Peterson G, Westfall D, et al. Soil organic carbon pools after 12 years in no-till dryland agroecosystems[J]. Soil Science Society of America Journal,2005,69(5):1600-1608
[25] Rangel O J P, Silva C A, Guimaraes P T G, et al. Oxidizible organic carbon fractions in a latosol cultivated with coffee at different planting spacings[J]. CIENCIA E AGROTECNOLOGIA,2008,32(2):429-437
[26] Blair G J, Chapman L, Whitbread A M, et al. Soil carbon changes resulting from sugarcane trash management at two locations in Queensland, Australia, and in North-East Brazil[J]. AUSTRALIAN JOURNAL OF SOIL RESEARCH,1998,36(6):873-882
[27] Heitkamp F, Raupp J, Ludwig B. Effects of fertilizer type and rate on labile soil fractions of a sandy Cambisol-long-term and short-term dynamics[J]. Journal of Plant Nutrition & Soil Science,2011,174(1):121-127
[28] Du Y H, Guo P, Liu J Q, et al. Different types of nitrogen deposition show variable effects on the soil carbon cycle process of temperate forests[J]. Global Change Biology,2014,20(10):3222-3228
[29] Cusack D F. Soil nitrogen levels are linked to decomposition enzyme activities along an urban-remote tropical forest gradient[J]. Soil biology & biochemistry,2013,57:192-203
[30] 肖胜生. 温带半干旱草地生态系统碳固定及土壤有机碳库对外源氮输入的响应[D].北京:中国科学院地理科学与资源研究所,2010:1138-1148
[31] Barreto P A B, Gama-Rodrigues E F, Gama-Rodrigues A C. et al. Distribution of oxidizable organic C fractions in soils under cacao agroforestry systems in Southern Bahia, Brazil[J]. Agroforest Syst,2011,81:213-220
[32] Rumpel C, K gel-Knabner I. Deep soil organic matter-a key but poorly understood component of terrestrial C cycle[J]. Plant and Soil,2011,338(1-2):143-158
[33] Treseder K K. Nitrogen additions and microbial biomass:a meta-analysis of ecosystem studies[J]. Ecology Letters,2008,11(10):1111-1120
[34] Frey S D, Knorr M, Parrent J L, et al. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests[J]. Forest Ecology and Management,2004,196(1):159-171
[35] Whittinghill K A, Currie W S, Zak D R, et al. Anthropogenic N deposition increases soil C storage by decreasing the extent of litter decay:analysis of field observations with an ecosystem model[J]. Ecosystems,2012,15(3):450-461
[36] Majumder B, Mandal B, Bandyopadhyay P K, et al. Soil organic carbon pools and productivity relationships for a 34 year old rice-wheat-jute agroecosystem under different fertilizer treatments[J]. Plant and Soil,2007(1-2):53-67
[37] Loss A, Pereira M G, Ferreira E P, et al. Oxidizable organic carbon fractions of an ultisol under an alley cropping system[J]. REVISTA BRASILEIRA DE CIENCIA DO SOLO.2009,33(4):867-874
[38] Parton W J, McKeawn B, Kirchner V, et al. Century user manual[M]. Colorado State University, Fort Collins, Colorado,1992
[39] Guareschi R F, Pereira M G, Perin A, et al. Oxidizable carbon fractions in red Latosol under different management systems[J]. REVISTA CIENCIA AGRONOMICA,2013,44(2):242-250 |