[1] Flexas J,Bota J,Jeroni Galmés,et al. Keeping a positive carbon balance under adverse conditions:Responses of photosynthesis and respiration to water stress[J]. Physiologia Plantarum,2006,127(3):343-352 [2] Ohmiya A. Biosynthesis of plant pigments:anthocyanins,betalains and carotenoids[J]. The Plant Journal,2008,54(4):733-749 [3] Esteban R,Moran J F,Becerril J M,et al. Versatility of carotenoids:An integrated view on diversity,evolution,functional roles and environmental interactions[J]. Environmental and Experimental Botany,2015,119:63-75 [4] Wang Z,Xu W Z,Kang J Y,et al. Overexpression of alfalfa Orange gene in tobacco enhances carotenoid accumulation and tolerance to multiple abiotic stresses[J]. Plant Physiology and Biochemistry,2018,130:613-622 [5] Nisar N,Li L,Lu S,et al. Carotenoid metabolism in plants[J]. Molecular Plant,2015,8(1):68-82 [6] Lu S,Van Eck J,Zhou X,et al. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of-carotene accumulation[J]. The Plant Cell,2006,18(12):3594-3605 [7] Lopez A B,Van E J,Conlin B J,et al. Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers[J]. Journal of experimental botany,2008,59(2):213-223 [8] Wang Z,Qingbo K,Duck K M,et al. Transgenic alfalfa plants expressing the sweetpotato Orange gene exhibit enhanced abiotic stress tolerance[J]. PLOS ONE,2015,10(5):e0126050 [9] Busch M,Seuter A,Hain R. Functional analysis of the early steps of carotenoid biosynthesis in tobacco[J]. Plant Physiology,2002,128(2):439-453 [10] Zhang J C,Tao N G,Xu Q,et al. Functional characterization of Citrus PSY gene in Hongkong kumquat (Fortunella hindsii Swingle)[J]. Plant Cell Reports,2009,28(11):1737 [11] Park S,Kim H S,Jung Y J,et al. Orange protein has a role in phytoene synthase stabilization in sweetpotato[J]. Scientific Reports,2016,6(1):33563 [12] Karppinen K,Zoratti L,Sarala M,et al. Carotenoid metabolism during bilberry (Vaccinium myrtillus L.) fruit development under different light conditions is regulated by biosynthesis and degradation[J]. BMC Plant Biology,2016,16(1):95 [13] Ido K,Ifuku K,Yamamoto Y,et al. Knockdown of the PsbP protein does not prevent assembly of the dimeric PSII core complex but impairs accumulation of photosystem II supercomplexes in tobacco[J]. Biochimica et Biophysica Acta (BBA)/Bioenergetics,2009,1787(7):873-881 [14] Ifuku K,Ido K,Sato F. Molecular functions of PsbP and PsbQ proteins in the photosystem II supercomplex[J]. Journal of Photochemistry and Photobiology B:Biology,2011,104(1-2):158-164 [15] Kang L,Kim H S,Kwon Y S,et al. IbOr regulates photosynthesis under heat stress by stabilizing IbPsbp in sweetpotato[J]. Frontiers in Plant Science,2017,8:989 [16] Goo Y M,Han E H,Jeong J C,et al. Overexpression of the sweet potato IbOr gene results in the increased accumulation of carotenoid and confers tolerance to environmental stresses in transgenic potato[J]. Comptes Rendus Biologies,2015,338(1):12-20 [17] 张丽娟,李红兵,孙振玫,等. 过表达IbOr基因甘薯增强抗盐性的生理机制[J]. 应用与环境生物学报,2017,23(1):54-59 [18] 李敏,苏国霞,熊沛枫,等. 转多抗基因新疆大叶苜蓿光合生理特征对土壤水分变化的响应[J]. 草业学报,2018,27(11):95-105 [19] 叶子飘,王怡娟,王令俐,等. 大豆叶片光呼吸对光强和CO2浓度的响应[J]. 生态学杂志,2017,36(9):2535-2541 [20] 刘玉萍,周勇辉,吕婷,张晓宇,苏旭.青藏高原3种野豌豆光合生理特性的比较[J]. 草地学报,2017,25(1):122-129 [21] 任博,李俊,同小娟,等. 太行山南麓栓皮栎和刺槐光合作用CO2响应模拟[J]. 应用生态学报,2018,29(1):1-10 [22] 刘超,胡正华,陈健,等. 不同CO2浓度升高水平对水稻光合特性的影响[J]. 生态环境学报,2018,27(2):246-254 [23] Baly E C. The Kinetics of Photosynthesis[J]. Proceedings of the Royal Society of London,1935,149(868):596-596 [24] Thornley J H M. Mathematical models in plant physiology[M]. London:Academic Press,1976:86-110 [25] 叶子飘,于强. 一个光合作用光响应新模型与传统模型的比较[J]. 沈阳农业大学学报,2007,38(6):771-775 [26] 叶子飘,康华靖,段世华,等. 不同CO2浓度下大豆叶片的光合生理生态特性[J]. 应用生态学报,2018,29(2):583-591 [27] 叶子飘. 光合作用对光和CO2响应模型的研究进展[J]. 植物生态学报,2010,34(6):727-740 [28] Kim S H,Ahn Y O,Ahn M J,et al. Cloning and characterization of an Orange gene that increases carotenoid accumulation and salt stress tolerance in transgenic sweetpotato cultures[J]. Plant Physiology and Biochemistry,2013,70(1):445-454 [29] Cho K S. Expressing the sweet potato Orange gene in transgenic potato improves drought tolerance and marketable tuber production[J]. Comptes Rendus Biologies,2016,339(5-6):207-213 [30] 周玉霞,巨天珍,王引弟,等. 4种光响应曲线模型对3种高寒草甸植物的实用性分析[J]. 草地学报,2018,26(2):488-496 [31] 吕扬,刘廷玺,闫雪,等. 科尔沁沙丘-草甸相间地区黄柳和小叶锦鸡儿光合速率对光照强度和CO2浓度的响应[J]. 生态学杂志,2016,35(12):3157-3164 [32] 王荣荣,夏江宝,杨吉华,等. 贝壳砂生境干旱胁迫下杠柳叶片光合光响应模型比较[J]. 植物生态学报,2013,37(2):111-121 [33] 孙小玲,许岳飞,马鲁沂,等. 植株叶片的光合色素构成对遮阴的响应[J]. 植物生态学报,2010,34(8):989-999 [34] 魏明月,云菲,刘国顺,等. 不同光环境下烟草光合特性及同化产物的积累与分配机制[J]. 应用生态学报,2017,28(1):159-168 [35] 上官周平. 冬小麦对有限水分高效利用的生理机制[J]. 应用生态学报,1999(5):567-569 [36] 钟平安,邵东,黄英金,等. 不同光环境下辣椒光合特性和瞬时水分利用效率[J]. 生态学杂志,2019,25(7):1-8 [37] Davison P A,Hunter C N,Horton P. Overexpression of β-carotene hydroxylase enhances stress tolerance in Arabidopsis[J]. Nature,2002,418(6894):203-206 [38] GÖTz T,Sandmann G,RÖMer S. Expression of a bacterial carotene hydroxylase gene (crtZ) enhances UV tolerance in tobacco[J]. Plant Molecular Biology,2002,50(1):127-140 [39] 吴爱姣,徐伟洲,郭亚力,等. 不同水肥条件下达乌里胡枝子的光合-光响应曲线特征[J]. 草地学报,2015,23(4):785-792 [40] 樊良新,刘国彬,薛萐,等. CO2浓度倍增及干旱胁迫对紫花苜蓿光合生理特性的协同影响[J]. 草地学报,2014,22(1):85-93 [41] Leakey A D B,Uribelarrea M,Ainsworth E A,et al. Photosynthesis,productivity and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought[J]. Plant physiology,2006,140(2):779-790 [42] 郭连旺,沈允钢. 高等植物光合机构避免强光破坏的保护机制[J]. 植物生理学通讯,1996,32(1):1-8 |