[1] 孙宗玖,李培英,阿不来提,等. 种子萌发期38份偃麦草种质耐盐性评价[J]. 草业科学,2012,(07):1105-1113 [2] 姚涵,汤才国,赵静,等. 偃麦草基因组特异重复序列的分离与应用[J]. 中国农业科学,2016,(19):3683-3693 [3] Colmer T D,Flowers T J,Munns R. Use of wild relatives to improve salt tolerancein wheat[J]. Journal of Experimental Botany,2006,57(5):1059-1078 [4] 孟林,尚春艳,毛培春,等. 偃麦草属植物种质材料苗期耐盐性综合评[J]. 草业学报,2009,18(4):67-74 [5] 孙宗玖,李培英,阿不来提. 4份偃麦草资源对干旱胁迫的生理响应[J]. 草地学报,2010,(5):678-682+688 [6] 刘建霞. 源于偃麦草小麦白粉病抗性的遗传与基因定位[D]. 太谷县:山西大学,2008:13 [7] 徐林涛. 小麦-中间偃麦草种质系的鉴定[D]. 泰安:山东农业大学,2015:1-2 [8] 王凯,杜丽璞,张增艳,等. 中间偃麦草SGT1基因的克隆及其抗病功能的分析[J]. 作物学报,2008,(3):520-525 [9] 彭运翔,张力君,于颖杰,等. 偃麦草属植物种子和幼苗的耐盐性[J]. 内蒙古草业,2002(03):42-43 [10] 朱艳,畅志坚,张晓军,等. 偃麦草属分子标记开发研究进展[J]. 山西农业科学,2017,45(04):659-662 [11] 郭杰.百萨偃麦草耐盐相关基因的同源克隆与表达分析[D]. 南京:南京农业大学,2012:24-46 [12] Mardis E R. Next-generation DNA sequencing methods[J]. Annual Review of Genomics and Human Genetics,2008,9:387-402 [13] 李湘龙,柏斌,吴俊,等. 第二代测序技术用于水稻和稻瘟菌互作早期转录组的分析[J]. 遗传,2012,34(1):102-112 [14] Emrich S J,Barbazuk W B,Li L,et al. Gene discovery and annotation using LCM-454 transcriptome sequencing.Genome Res,2007,17(1):69-73 [15] Ohtsu K,Smith M B,Emrich S J,et al. Global gene expression analysis of the shoot apical meristem of maize (Zea mays L)[J]. The Plant Journal,2007,52(3):391-404 [16] Jones-Rhoades M W,Borevitz J O,Preuss D. Genome-Wide Expression Profiling of the Arabidopsis Female Gametophyte Identifies Families of Small,Secreted Proteins[J]. PLoS Genetics,2007,3(10):1848-1861 [17] Weber A P,Weber K L,Carr K,et al.Sampling the arabidopsis transcriptome with massively parallel pyrosequencing.Plant Physiol,2007,144(1):32-42 [18] Long X H,Hui Y L,Liang C,et al. RNA-seq for gene identification and transcript profiling in relation to root growth of bermudagrass (Cynodon dactylon) under salinity stress[J]. BMC Genomics,2015,16(1):575 [19] Shaun B,Keenan L A,Scott E W. Transcriptome profiling of Kentucky bluegrass (Poa pratensis L.) accessions in response to salt stress[J]. BMC Genomics,2016,17(1):48 [20] 孙业鹏. 盐碱胁迫下羊草转录组测序及分析[D]. 长春:吉林农业大学,2012:32-34 [21] 陆云峰,杨安娜,张俊红,等. 紫楠转录组EST-SSR标记开发及通用性分析[J]. 农业生物技术学报,2018,26(06):1014-1024 [22] 严佳文,肖图舰,袁启凤,等. 基于转录组序列的火龙果SSR和SNP多态性分析[J]. 热带作物学报,2018,39(07):1338-1343 [23] Mudalkar S,Golla R,Ghatty S,et al. De novo transcriptome analysis of an imminent biofuel crop,Camelina sativa,L. using Illumina GAIIX sequencing platform and identification of SSR markers[J]. Plant Molecular Biology,2014,84(1-2):159-171. [24] 李依民,彭亮,杨冰月,等. 基于高通量测序技术的黄三七根茎转录组数据分析[J]. 中草药,2018,49(21):38-45 [25] 李钊. 玉米苗期抗冻生理响应及其转录组调控分析[D]. 哈尔滨:东北农业大学,2017:78-80 [26] Sun P,Song S,Zhou L,et al. Transcriptome Analysis Reveals Putative Genes Involved in Iridoid Biosynthesis in Rehmannia glutinosa[J]. International Journal of Molecular Sciences,2012,13(12):13748-13763 [27] Upadhyay S,Phukan U J,Mishra S,et al. De novo leaf and root transcriptome analysis identified novel genes involved in Steroidal sapogenin biosynthesis in Asparagus racemosus[J]. BMC Genomics,2014,15(1):746 [28] 张小芳,王冰冰,徐燕,等. PEG模拟干旱胁迫下野生大豆转录组分析[J]. 大豆科学,2018,37(05):681-689 [29] 陈龙,王贤. 植物水分胁迫诱导蛋白的特性和功能[J]. 生物学教学,2003(11):2-3 [30] 邓楠. 买麻藤属芪类代谢途径及光合进化研究[D]. 北京:中国林业科学研究院,2017:48 [31] 冷暖,刘晓巍,张娜,等. 草地早熟禾干旱胁迫转录组差异性分析[J]. 草业学报,2017,26(12):128-137 [32] Jiang Y,Yang B,Harris N S,et al. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots[J]. Journal of Experimental Botany,2007,8(13):3591-3607 [33] Salekdeh G H,Siopongco J,Wade L J,et al. A proteomic approach to analyzing drought and salt-responsiveness in rice[J]. Field Crops Research,2002,76(2):199-219 [34] Buchanan B B,Gruissem W,Jones R L. Biochemistry and Molecular Biology of Plants[M]. 北京:科学出版社,2002:52-97 [35] Witzel K,Weidner A,Surabhi G K,et al. Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity[J]. Journal of Experimental Botany,2009,60(12):3545-3557 [36] Watkins J M,Hechler P J,Muday G K. Ethylene-induced flavonol accumulation in guard cells suppresses reactive oxygen species and moderates stomatal aperture[J]. Plant Physiology,2014,164(4):1707-1717 [37] Silva-Navas J,Moreno-Risue? o M A,Manzano C,et al. Flavonols mediate root phototropism and growth through regulation of proliferation-to-differentiation transition[J]. The Plant Cell,2016,28(6):1372-1387 [38] 孙静. 盐胁迫对小麦过氧化物酶活性影响的机理研究[D]. 济南:山东农业大学,2006:12-24 [39] 朱冬梅,贾媛,崔继哲,等. 植物对盐胁迫应答的转录因子及其生物学特性[J]. 生物技术通报,2010(04):16-21 [40] Winicov I. New Molecular Approaches to Improving Salt Tolerance in Crop Plants[J]. Annals of Botany (London),1998,82(6):0-710 [41] Seki M,Narusaka M,Ishida J,et al. Monitoring the expression profiles of 7000 Arabidopsis genes under drought,cold and high-salinity stresses using a full-length cDNA microarray[J]. The Plant Journal,2002,31(3):14 [42] Wei W,Zhang Y,Han L,et al. A novel WRKYtranscriptional factor from Thlaspi caerulescens negatively regulatesthe osmotic stress tolerance of transgenic tobacco[J]. Plant Cell Reports,2008,27(4):795-803 [43] 谢政文,王连军,陈锦洋,等. 植物WRKY转录因子及其生物学功能研究进展[J]. 中国农业科技导报,2016,18(03):46-54 [44] Kim D W,Rakwal R,Agrawal G K,et al. A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf[J]. Electrophoresis,2005,26(23):4521-4539 [45] Caruso G,Cavaliere C,Guarino C,et al. Identification of changes in Triticum durum,L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry[J]. Analytical and Bioanalytical Chemistry,2008,391(1):381-390 [46] 赵彦,高鑫,王丹,等. 蒙古冰草Lhcb1基因克隆及干旱胁迫下的表达分析[J]. 西北植物学报,2017,37(02):211-216 [47] Pruzinska A,Anders I,Aubry S,et al. In Vivo Participation of Red Chlorophyll Catabolite Reductase in Chlorophyll Breakdown[J]. The Plant Cell Online,2007,19(1):369-387 [48] Xiao H J,Jin J H,Chai W G,et al. Cloning and expression analysis of pepper chlorophyll catabolite reductase gene CaRCCR[J]. Genetics & Molecular Research Gmr,2015,14(1):368-379 |