[1] ZHANG Y,GAO Q,XU L,et al. Shrubs proliferated within a six-year exclosure in a temperate grassland-Spatiotemporal relationships between vegetation and soil variables[J]. Sciences in Cold and Arid Regions,2014,36(2):139-149 [2] 王岭,王德利. 放牧家畜食性选择机制研究进展[J]. 应用生态学报,2007,18(1):205-211 [3] 王忠武. 载畜率对短花针茅荒漠草原生态系统稳定性的影响[D]. 呼和浩特:内蒙古农业大学,2009:37-38 [4] 海旭莹,董凌勃,汪晓珍,等. 黄土高原退耕还草地C,N,P生态化学计量特征对植物多样性的影响[J]. 生态学报,2020,40(23):8570-8581 [5] 冯斌,杨晓霞,刘文亭,等. 不同放牧方式对高寒草地功能群生态化学计量特征的影响[J]. 草地学报,2022,30(5):1063-1070 [6] 丁令智,满秀玲,肖瑞晗,等. 寒温带森林根际土壤微生物量碳氮含量生长季内动态变化[J]. 林业科学,2019,55(7):178-186 [7] 高巧静,朱文琰,侯将将,等. 放牧强度对高寒草甸植物叶片生态化学计量特征的影响[J]. 中国草地学报,2019,41(3):45-50 [8] 徐新影,张卫青,李金霞,等. 克氏针茅(Stipa krylovii)草原土壤与优势植物碳氮含量对放牧强度的响应[J]. 草地学报,2022,30(9):2255-2263 [9] WERMA J P, MACDONALD C A, GUPTA V K,et al. New and Future Developments in Microbial Biotechnology and Bioenginee-ring[J]. Amsterdam:Elsevier,2021:149-157 [10] 蒋婧,宋明华. 植物与土壤微生物在调控生态系统养分循环中的作用[J]. 植物生态学报,2010,34(8):979-988 [11] 李德新. 内蒙古高原荒漠草原生态系统概论[M]. 呼和浩特:内蒙古人民出版社,1995:1-9 [12] DENEF K,ROOBROECK D,WADU M,et al. Microbial community composition and rhizodeposit-carbon assimilation in differently managed temperate grassland soils[J]. Soil Biology and Biochemistry,2009,41(1):144-153 [13] PATERSON E. Importance of rhizodeposition in the coupling of plant and microbial productivity[J]. European Journal of Soil Science,2010,54(4):741-750 [14] 张永生,赖欣,张静妮,等. 放牧对贝加尔针茅草原土壤细菌群落结构的影响[J]. 生态学杂志,2010,29(12):2457-2463 [15] 李婷婷,海丽丽,韩冰,等. 放牧强度对大针茅根际和非根际土壤中细菌数量和群落特征的影响[J]. 草地学报,2016:24(5):967-974 [16] 高雪峰,韩国栋,张功,等. 放牧对荒漠草原土壤微生物的影响及其季节动态研究[J]. 土壤通报,2007(1):145-148 [17] 王英成. 三江源区退化高寒草甸土壤微生物多样性及空间变化规律研究[D]. 西宁:青海大学,2021:46-47 [18] 丁成翔. 青藏高原高寒草原土壤微生物对不同放牧方式的响应[D]. 青海:青海大学,2020:77-78 [19] 李宏,张青青,江康威,等. 山地草甸不同放牧强度对土壤细菌群落特征的影响[J]. 中国草地学报,2021,43(11):37-44 [20] CEASE A J,ELSER J J,FORD C F,et al. Heavy livestock grazing promotes locust outbreaks by lowering plant nitrogen content[J]. Science,2012,335(6067):467 [21] 王铮. 不同放牧方式对内蒙古典型草原优势种植物功能性状的影响[D]. 呼和浩特:内蒙古大学,2021:15-19 [22] 李西良. 羊草对长期过度放牧的矮小化响应与作用机理[D]. 北京:中国农业科学院,2016:45-46 [23] 许雪贇,曹建军,杨淋,等. 放牧与围封对青藏高原草地土壤和植物叶片化学计量学特征的影响[J]. 生态学杂志,2018,37(5):1349-1355 [24] 马文静. 羊草和冷蒿的氮磷养分利用策略研究[D]. 北京:中国农业科学院,2019:16-17 [25] 杨惠敏,王振南,吉春荣. 刈割和放牧后牧草碳氮动态研究进展[J]. 中国草地学报,2013,35(4):102-109 [26] 贾丽欣,张峰,乔荠蓉,等. 放牧强度对荒漠草原无芒隐子草斑块碳氮化学计量特征的影响[J]. 中国草地学报,2019,41(1):9-16,93 [27] 丁小慧,宫立,王东波,等. 放牧对呼伦贝尔草地植物和土壤生态化学计量学特征的影响[J]. 生态学报,2012,32(15):4722-4730 [28] 张婷,翁月,姚凤娇,等. 放牧强度对草甸植物小叶章及土壤化学计量比的影响[J]. 草业学报,2014,23(2):20-28 [29] ENDARA M J,COLEY P D. The resource availability hypothesis revisited:a meta-analysis[J]. Functional Ecology,2011,25(2):389-398 [30] ROYER M,LARBAT R,LE BOT J,et al. Is the C:N ratio a reliable indicator of C allocation to primary and defence-related metabolisms in tomato?[J]. Phytochemistry,2013,88(Supplement C):25-33 [31] 刘盟盟,贾丽,张洪芹,等. 机械损伤对冷蒿叶片次生代谢产物的影响. 浙江农林大学学报,2015,32(6):845-852 [32] ROBINSION C T. Long-term changes in community assembly,resilience following experimental floods[J]. Ecological Applications,2012,22(7):1949-1961 [33] SEMMARTIN M,GARIBALDI L A,CHANETON E J. Grazing history effects on above and below-ground litter decomposition and nutrient cycling in two co-ocurring grazing [J]. Plant and Soil,2008,303(1):177-189 [34] 李江文. 长期不同载畜率下短花针茅荒漠草原植物功能性状与功能多样性的关系[D]. 呼和浩特:内蒙古农业大学,2018:71-85 [35] NIE Y,WANG M,ZHANG W,et al. Ammonium nitrogen content is a dominant predictor of bacterial community composition in an acidic forest soil with exogenous nitrogen enrichment[J]. Science of the Total Environment,2017,624:407 [36] ZHAO F,REN C,WANG Z,et al. Grazing intensity influence soil microbial communities and their implications for soil respiration [J]. Agriculture,Ecosystems & Environment,2017,249:50-56 [37] 马源,李林芝,张德罡,等. 退化高寒草甸优势植物根际与非根际土壤养分及微生物量的分布特征[J]. 草地学报,2019,27(4):797-804 [38] YANG F,NIU K,COLLINS C G,et al. Grazing practices affect the soil microbial community composition in a Tibetan alpine meadow[J]. Land Degradation & Development,2019,30(1):49-59 [39] 马志良,赵文强,刘美,等. 增温对高寒灌丛根际和非根际土壤微生物生物量碳氮的影响[J]. 应用生态学报,2019,30(6):1893-1900 [40] 王杰. 氮添加对黄土丘陵区白羊草根际碳转化的影响机制[D]. 杨凌:西北农林科技大学,2022:78-82 [41] 王光华,刘俊杰,于镇华,等. 土壤酸杆菌门细菌生态学研究进展[J]. 生物技术通报,2016,32(2):14-20 [42] WALKER C B,DE L A TORRE J R, KLOTA M G,et al. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(19):8818-8823 [43] BLAINEY P C,MOSIER A C,POTANINA A,et al. Genome of a low-salinity ammonia-oxidizing archaeon determined by single cell and metagenomic analysis[J]. Plos One,2011,6(2):16626 [44] HALLAM S J,KONSTANTINIDIS K T,PUTUAM N,et al. Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(48):18296-18301 [45] SPANG A,POEHLEIN A,OFFRE P,et al. The genome of the ammonia-oxidizing Candidatus nitrososphaera gargensis:insights into metabolic versatility and environmental adaptations[J]. Environmental Microbiology,2012,14(12):3122 [46] TOURNA M,STIEGLMEIER M,SPANG A,et al. Nitrososphaera viennensis,an ammonia oxidizing archaeon from soil[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(20):8420-8425 [47] 洪义国,何翔,吴佳鹏,等. 海洋氨氧化古菌及其驱动的碳氮生物地球化学循环过程研究进展[J]. 中国科学院大学学报,2020,37(4):433-441 [48] 贾渊. 荒漠草原植物根分泌物及其有机酸组分对土壤中微生物及养分的影响[D]. 呼和浩特:内蒙古师范大学,2019:1-7 [49] ZHANG J,SONG F,XIN Y H,et al. Microvirga guangxiensis sp. nov.,a novel alphaproteobacterium from soil,and emended description of the genus Microvirga. [J]. Journal of Systematic and Evolutionary Microbiology,2009,59(8):997-2001 [50] VEYISOGLU A,TATAR D,SAYGIN H,et al. Microvirga makkahensis sp. nov.,and Microvirga arabica sp. nov.,isolated from sandy arid soil[J]. Antonie Van Leeuwenhoek,2016,109:287-296 [51] BAILEY A C,KELLOM M,PORET-PETERSON A T,et al. Draft genome sequence of Microvirga sp. strain BSC39,isolated from biological soil crust of Moab,Utah[J]. Genome Announcements,2014,2(6):1-2 |